
Intelligent Text Input Methods and Metrics
Ph.D. Thesis Proposal

Mingrui “Ray” Zhang
The Information School

University of Washington

mingrui@uw.edu
https://drustz.com/

March 17, 2021

Supervisory Committee:
Jacob O. Wobbrock (Chair), University of Washington

Alexis Hiniker, University of Washington
Leah Findlater, University of Washington

Shumin Zhai, Google
James Fogarty (GSR), University of Washington

Abstract

Text input serves as a fundamental interactive part of almost any human-computer system, enabling
expression, communication, and information capture. Since the cuneiform was invented as a writing
system back in 3500 BCE, text as the medium of information has been created, recorded and
communicated throughout the human civilization. The way we enter text significantly affects
the efficiency we communicate with the device. Traditional desktop settings employ hardware
keyboards for text input, which worked well for skilled typists. However, the devices in the current
era are becoming mobile and ubiquitous, and have various form factors: from watch-sized wearable
devices to handheld smartphones and wall-size large displays, most of which do not offer a physical
keyboard. As a result, we need new text input interactions to communicate with those new devices.
On the other hand, devices are becoming “intelligent”, with powerful hardware processors to run
advanced algorithms. Text input can take advantage of these capabilities but only if new algorithms
and interaction techniques are developed.

To address the need, my thesis aims to develop intelligent text input systems utilizing the state-
of-the-art machine learning techniques, in order to support a comprehensive spectrum of text
interactions, including entry, editing, and entry of special symbols such as emojis. To encourage
fast typing and unleash the power of the auto-correction, I design PhraseFlow which decodes the
keystrokes on phrase-level and uses future input sequences to correct previous text. To improve the
text editing process on touch-screen devices, I design Gedit, a set of on-keyboard gestures for mobile
text editing. I also invent a novel concept, Type, Then Correct, together with three accompanying
interaction techniques to improve the text correction on touch screens.

People are not only communicating in text: they use non-textual symbols such as emojis to en-
rich the expression. Another part of my work includes understanding how people use lexical and
semantic emoji suggestion systems, and designing a voice-based interaction Voicemoji to facilitate
blind and low vision users in entering and exploring emojis.

As advanced algorithms enabled more intelligent text input interactions, we need new metrics
and evaluation methods to quantify their performance. I present a method-independent model,
transcription sequences, for intelligent text input evaluations. Furthermore, to combine the speed
and accuracy into a unified performance metric, I derive the text entry throughput based on the
information theory, which is proved the most stable metric across various speed-accuracy conditions.

Based on my prior work, I propose three text input interactions for daily typing in the ubiquitous
computing environment: 1) TypeAnywhere: a QWERTY-based text input interaction that detects
finger taps with a wearable device and decodes the taps into text. 2) TypeAnywhere One: a single-
hand extension for TypeAnywhere, and a friendly version for situational impairments when one
hand is occupied. 3) AnchorKeyboard: a non-visual QWERTY keyboard for large touch screens.
The user puts all fingers on the screen and only lift one finger when touching a key, making the
typing finger identifiable with other anchor fingers. My thesis statement is:

Artificial intelligence can enable and improve advanced text input interactions, including
the entering and editing of text, and entering of emojis; intelligent text interactions, in
turn, warrant new text entry metrics for their evaluation.

Contents

1 Introduction 1

2 Related Work 4
2.1 Text Input Models and Metrics . 4
2.2 Text Input Methods Beyond the Desktop Environment 6
2.3 The Machine Learning Advancement in Natural Language Processing 7
2.4 Design Principles for Human-AI Interaction . 8

3 Models and Metrics for Intelligent Text Input Methods 10
3.1 The Transcription Sequence Model:

Enable Less Constrained Text Entry Evaluations . 10
3.2 Text Entry Throughput:

Towards Unifying Speed and Accuracy in a Single Performance Metric 11

4 Intelligent Text Input Methods 14
4.1 PhraseFlow:

Designs and Empirical Studies of Phrase-Level Input 14
4.2 Gedit:

Keyboard Gestures for Mobile Text Editing . 16
4.3 Type, Then Correct:

Intelligent Text Correction Techniques for Touch Screens 17
4.3.1 JustCorrect:

Intelligent Post Hoc Text Correction Techniques on Smartphones 19

5 Intelligent Entry Methods for Emojis 20
5.1 Comparing Lexical and Semantic Emoji Suggestions 20
5.2 Voicemoji:

Speech-based Emoji Entry System . 21

6 Proposed Work 24
6.1 TypeAnywhere:

A Ubiquitous QWERTY Text Entry Solution . 24
6.2 TypeAnywhere One:

One-handed TypeAnywhere . 27
6.3 AnchorKeyboard:

Non-visual Keyboard for Large Touch Screens . 28

CONTENTS

Contents ii

7 Conclusions 30
7.1 Contributions . 30

7.1.1 Theoretical Contributions . 30
7.1.2 Artifact Contributions . 31
7.1.3 Empirical Contributions . 32

7.2 Schedule . 32

Acknowledgement 33

Bibliography 34

CONTENTS

Chapter 1

Introduction

Text, as the medium of information, is an essential part of the human history: we think, talk
and write through text. Text input, the interaction of entering text to devices, thus serves as a
fundamental part of most human-computer systems. Since the commercial successful “Sholes–Glid-
den Type Writer” was produced in 1874 [67], tons of research on text input has been conducted,
including improving the keyboard layout [7, 15, 86], proposing alternative hardware for other lan-
guages [63], and modeling the human performance in text entry tasks [11, 18, 84]. For traditional
desktop settings, the physical QWERTY keyboard works well, with expert typists reaching 100 or
more words pre minute (WPM) using multiple fingers [106]. However, as a result of the technology
advancement, the devices today evolve rapidly into various form-factors, and the physical key-
board is no longer an optimal text entry solution for most of them. For example, wearable devices
such as watches and earphones has small physical input spaces; smartphones and tablets employ
touch screens rather than physical buttons as the primary interaction modality. Although those
devices still largely employ the traditional keyboard paradigm in their text entry systems, such as
using cursor for position control and manipulating text at character level, there are definitely new
opportunities to design text input interactions better suited to the new paradigms.

The HCI community has focused on improving the text input interaction beyond the desktop-
settings for a long time. For example, designing gestures and sensors to support text input on
small-size devices [21, 42, 113, 114], optimizing and personalizing keyboard layout for touch screen
interfaces [16, 86, 119], and leveraging multi-modal feedback for accessible text entry interactions
[8,89]. However, most of them exhibit three limitations: 1) they emphasize too much on inventing
“novel interactions”, instead of making the interaction practical. Novel and fancy interactions do
not equal to good interactions, and interactions that are theoretically optimal do not necessarily
perform well in real settings. For example, complex typing gestures can be tiring and hard to
perform, and alternative keyboard layouts usually have a steep learning curve; 2) they only consider
the text entering part, ignoring other parts such as text editing, and non-textual symbol entering,
which are almost as important as entering text. 3) they focus on only the literal-level input, such
as deterministic character-level input, or word-level input backed by word frequencies. In this way,
they are not able to understand the meaning of users’ intention, which operates on the semantic
level. The end goal of text entry interactions is to improve the communication between the human

CHAPTER 1. INTRODUCTION

2

Figure 1.1: An overview of my research. Over the past three years, I have done foundational work on
deriving text input models and metrics, inventing applications for intelligent text entry and editing, as well
as designing intelligent entry methods for non-textual symbols

and the machine, rather than to solely improve the words-per-minute entry speed.

To address the limitations, one promising approach is to combine the power of artificial intelligence
(AI). The advancement of machine learning (ML) algorithms, especially deep learning algorithms,
has enabled the machine to achieve and even beat human performances on many understanding
tasks that were impossible before, such as visual object classification [48] and voice recognition [3].
The natural language processing (NLP) community has also benefited from such advancement,
making language models able to incorporate larger context and achieve high performance on tasks
including summary, question-answering and conversation [17,79,120]. Those algorithms can poten-
tially empower the text input methods to understand the user intentions, and to provide interactions
that are simple and practical without introducing many barriers of learning. On the other hand,
most ML algorithms are designed without human-in-the-loop, while text entry is a highly interac-
tive procedure with the corporation of human and machine. There is for sure a gap between ML
algorithms and text input interactions.

The goal of my dissertation work is to fill in the gap — designing and evaluating novel text entry
interactions powered by artificial intelligence. Because of the limitation of traditional metrics, I
first invented a method-independent model, T-seq [127], and a performance-level metric throughput
[130], to evaluate intelligent text input methods. I then designed and evaluated a novel keyboard,
PhraseFlow [129], that decodes the input sequences on the phrase-level. To improve the text
editing experience on touch screens, I implemented Gedit [128], a set of on-keyboard gestures for
convenient text editing, and Type, Then Text (TTC) [126], the concept of typing corrections first
and applying it to the errors without the need of cursor placement. TTC is further extended by
the correction interaction JustCorrect [25]. My work also focuses on non-textual symbol entry, i.e.

CHAPTER 1. INTRODUCTION

3

emojis, to support text input as a holistic information input system: I conducted empirical studies
to understand the effect of lexical and semantic emoji suggestions on online conversations [124],
and invented a speech-based emoji input system VoicEmoji for blind and low vision users [125].

Building upon my previous work, I would like to propose three potential projects that further
deepen the combination of artificial intelligence and text input systems, deriving practical input
systems for the ubiquitous computing environment:

• TypeAnywhere, an input interaction enabling the user to perform QWERTY-like keyboard
typing on any surface with two wearable devices. TypeAnywhere utilizes the finger taps
detected by the devices and decodes the tap sequences into text with neural network language
models. There is no predefined finger-to-key mappings in TypeAnywhere, and the user can
leverage their touch-typing skills on the physical keyboard, which lowers the bar of adoption.
TypeAnywhere will also employ the phrase-level decoding and the TTC-style correction to
improve the system usability.

• TypeAnywhere One, a single-hand version of TypeAnywhere. TypeAnywhere requires the user
to use both hands to type, which is not feasible for motor-impaired users or when one hand
is occupied. TypeAnywhere One has a different design of the finger-to-key mapping with
TypeAnywhere, as it only requires one hand to type the characters on the whole keyboard. It
utilizes a “mirrored” version of the layout when typing the characters on the other half of the
keyboard. For example, if one types ‘A’ with left pinky, then one could type it with the right
pinky as well. I will explore efficient candidate selection and disambiguation interactions for
this project.

• AnchorKeyboard, a non-visual QWERTY keyboard for large touch screens. The keyboard does
not have a fixed layout on the screen, rather it regards all on-screen touches as “anchors”,
and decodes the tapped finger point according to the anchor positions. Hence the user need
to place all the fingers on screen and only tap one finger when typing. AnchorKeyboard could
help blind and low vision users to type on large touch screens, as well as sighted users for
eyes-free text entry.

The overall research diagram, including my proposed work, is illustrated in Figure 1.1. The state-
ment of my dissertation is:

Artificial intelligence can enable and improve advanced text input interactions, including
the entering and editing of text, and entering of emojis; intelligent text interactions, in
turn, warrant new text entry metrics for their evaluation.

The following Chapter 2 describes the background and related work. Remaining chapters present
my research that is illustrated in Figure 1.1: in Chapter 3, I present my work on models and
metrics for intelligent text entry systems. In Chapter 4, I introduce my work on improving text
entry and editing process with decoders and interactions powered by machine learning. In Chapter
5, I extend my work on intelligent emoji entry. In Chapter 6, the proposed work for ubiquitous
intelligent text entry interactions is presented. Chapter 7 concludes the proposal with anticipated
contributions and a schedule.

CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

This chapter discusses prior work on (i) text input models and metrics, (ii) text input methods
beyond the desktop environment, (iii) the machine learning advancement in Natural Language
Processing (NLP) and (iv) design principles for human-AI interaction.

2.1 Text Input Models and Metrics

The backbone of text input research is the evaluation models and metrics: when a new input
method is invented, we need to quantify its performance, mostly in speed and accuracy. For
speed, the metric Words-per-Minute (WPM) is used, and for accuracy, different error rates are
calculated, which will be specified later. A robust and reliable metric is even more important when
evaluating intelligent text input systems, as features such as auto-correction and predictions are
changing the way we type, yet their performance is difficult to measure given the complexity of
the algorithms. While calculating the speed is straightforward, measuring text entry error rates
presents a particular challenge. First, it is difficult to identify the error text composed by a user
without a reference text. Hence modern text input research mainly utilizes the transcription tasks
during the evaluation. Second, there are different kinds of errors, i.e. errors that are fixed during
the typing process, and errors that remained in the final text. Early experiments in the 1990s
did not use the error metrics in their evaluations: some studies simply ignored errors [62], while
other prohibited erroneous characters from appearing [94], or disabled all error correction [68].
Those evaluations were both unnatural and constrained, and could lead to further errors in the
transcription [69].

In 2001, seminal work by Soukoreff and MacKenzie [87] began to loosen these constraints by
using the Levenshtein minimum string distance algorithm [61] to calculate errors based on the
edit distance between two strings1. BACKSPACE was now allowable as the sole means of error
correction, and participants could enter text freely without having to resynchronize after an inserted
or omitted character. Later on, Soukoreff and MacKenzie’s influential 2003 paper [88] showed how to

1The edit distance is the minimum number of character insertions, deletions, or substitutions required to turn one
string into another.

CHAPTER 2. RELATED WORK

2.1. Text Input Models and Metrics 5

calculate error rates with the Input Stream (IS) model, where characters entries and BACKSPACES
(<) were recorded sequentially as a stream during typing, such as:

thr<<e quck<<ick brwn<<on<wn

The resulting transcribed string from the IS above is “the quick brown” with six BACKSPACEs
encoded as error corrections during entry. The IS not only contains all information necessary
to extract the final transcribed string, but also contains all dynamic information about the text
entry process that created it. From this information, Soukoreff and MacKenzie [88] defined three
separate error rates: 1) uncorrected errors, for those remaining in the final transcribed string;
2) corrected errors, for any characters backspaced during entry; and 3) total errors, for their
sum. Character- and word-level analyses and metrics based on the IS model were also proposed
in the later work [108, 118]. However, because the IS model is strictly serial and only able to
append edits to its right-hand side, numerous editing restrictions are imposed in this paradigm:
(1) BACKSPACE is the only error correction mechanism allowed; (2) the text cursor must always
remain at the end of the string entered thus far. No mouse or arrow keys can be used to move
the text cursor; (3) selecting-and-replacing text is not allowed; and (4) autocorrection and other
intelligent functions are not feasible. Character-level analyses were extended to the input stream
by Wobbrock and Myers [108]. Other error-related metrics such as Cost per Correction [5,41] and
word error rate [58] have been introduced. However, as before, these metrics rely on the sequential
input stream paradigm, and therefore are similarly constrained. Method-independent evaluations
based on the IS model cannot accommodate many modern text entry behaviors. In section 3.1,
I present the Transcription Sequence model [127], which remedies these limitations, and offers a
method-independent evaluation paradigm and platform-independent evaluation testbed.

Besides the difficulty of error calculation, there is another challenge for text entry evaluation: as
we use two metrics speed and accuracy to measure a text input method, we could not draw a firm
conclusion on the overall performance. Furthermore, as with all human performance, speed and
accuracy trade off against each other, complicating the assessment in the presence of such tradeoffs.
Previous work attempted to derive simple unified metric for text entry performance. For example,
Wobbrock [67] proposed Adjusted Words per Minute (AdjWPM) as

Ad jWPM =WPM× (1−E) (2.1)

where E refers to the uncorrected error rate [88]. However, the definition of AdjWPM lacks any
theoretical basis. Related research on the speed-accuracy tradeoff has a long history, specifically
arising with Fitts’ law [35] in 1954 for aimed pointing movements. Fitts’ law is an empirical model
that combines the spread-of-hits and pointing time. Inspired by Shannon information theory [80],
the law predicts the movement time of an aimed pointing task: it regards the human motor system
as a communications channel, which transmits information during pointing. Based on Fitts’ law,
Crossman [24] provided a correction to normalize the speed-accuracy tradeoff with his corrected
throughput measure, which was later popularized by Welford [105] (pp. 147-149). Inspired by the
previous work, in section 3.2, I derived a text entry throughput metric [130] based on the information
theory [80] as a performance metric unifying the speed and accuracy, which was validated to be
the most stable metric under different speed-accuracy conditions.

CHAPTER 2. RELATED WORK

2.2. Text Input Methods Beyond the Desktop Environment 6

2.2 Text Input Methods Beyond the Desktop Environment

There are plenty of projects aiming to provide alternative text input solutions beyond the traditional
desktop settings. For example, text entry research with wearable devices has gained a lot of
attention because of the always available environment. One category is to type on an external
device: Twiddler [64] is a one-hand chording keyboard, where the user grabs the device and press
multiple keys on a grid to enter a character. Smart watch text entry interactions also falls into this
category [45, 50, 60, 74, 116, 117], where the user performs text entry through the interface of the
watch device. For example, COMPASS [117] utilizes the rotor of the watch for character selection,
and reached 12.5 WPM with a dynamically positioned cursor. WatchWriter [45] implemented
both tap and swipe-based text entry on the watch interface. The other category is typing with
bare hands with external sensors. For example, TipText [114] and BiTipText [113] project the
QWERTY layout on the index finger and enable subtle text entry with thumb-to-index taps sensed
by capacitive overlays. Finger-T9 [111] mapped the layout of a 9-key numpad to the finger segments
for the thumb to tap. WrisText [42] detects the wrist motions by proximity sensors and enables
joystick-like whirling input for text entry.

Alternative text input interactions with intelligent decoding algorithms was also proposed over
the past decades: Kristensson and Zhai invented SHARK2 [59], an on-screen swipe-based text
input interaction that achieved fast speed with single hand. SHARK2 uses template matching
based algorithm to recognize the gestures performed by the user and returns word-level candidates.
Findlater and Wobbrock proposed a personalized on-screen keyboard [33] that could adapt its layout
to the users typing behavior gradually. A follow-up work TOAST [81] employed a Markov model in
the keyboard decoding process and achieved 44.6 WPM on big touch screens. The Finger Fitts Law
[14] proposed a dual-distribution to model finger’s touch point distribution accurately; WalkType
[40] incorporated the accelerometer data to improve the touch accuracy during walking conditions;
Yin et al. [119] proposed a hierarchical spatial backoff model to make the touchscreen keyboards
adaptive to individuals and postures. Weir et al. [103] utilized the touch pressure to ”lock” the
characters during decoding. Zhu et al. [132] showed that participants could type reasonably fast
on an invisible keyboard with adjusted spatial models. Vertanen et al. [99] developed VelociTap,
a phrase-level decoder for mobile text entry. Together with its follow-up projects [96, 97], various
factors such as visual feedback on touched keys, keyboard size, word-delimiter actions (e.g. a right
swipe), and decoding scopes were investigated for phrase-level input. However, they assumed that
the user would input word deliminators perfectly without errors, which was not the case in real
settings.

Beyond on-screen keyboards, alternative text input interactions are proposed in the air [118], in
VR [122], for glasses [121], for accessibility purposes [8, 109], and even on music instruments [30].
However, many text input methods require long training time to adopt, and most of them operate
on character or word level (except for the work from Vertanen et al. [96,97,99]), without taking the
longer context and the higher-level information into the decoding process. To address those limi-
tations, in section 4.1, I designed a phrase-level input keyboard PhraseFlow [129] and evaluated its
adoption and performance in the wild; in Chapter 5, I investigated semantic-level emoji suggestion
mechanism [124], and invented a speech-based emoji input system called Voicemoji for blind and
low vision users [125].

CHAPTER 2. RELATED WORK

2.3. The Machine Learning Advancement in Natural Language Processing 7

While much previous work focused on user behaviors during mobile text entry, there have been
a few projects that improved upon the text editing process. Most of the editing interactions are
shipped on current commercial keyboards, such as the touchpad-style cursor moving interaction on
the Apple iOS keyboard, and the swipe-based cursor moving interaction on Gboard [44]. Fuccella et
al. [38,39] designed a gesture set that could be performed on the keyboard area for different editing
operations, such as cursor movement and copy/paste. Their gestural method was shown to be faster
and more favored than the de facto touch+widget method. For text correction interactions, the
smart-restorable backspace [4] technique allows users to perform a swipe gesture on the backspace
key to delete the text back to the position of an error, and restore that text by swiping again on the
backspace key after correcting the error. To determine error positions, the technique used Myers’
algorithm [70] to compare the edit distance of the text and the word in a dictionary. ReType [85]
is a desktop keyboard based correction interaction that locates the the error positions guided by
gaze information and correct them with the keyboard input. In section 4.2, I present Gedit [128],
a set of on-keyboard gestures for mobile text editing, including cursor control, copy, cut, paste
and undo commands. I then present a novel concept for text correction interaction: Type, Then
Correct (TTC) [126] in section 4.3, which allows the user to type the correction first, and apply it
to the error without the need of cursor reposition. I also realized the concept with three interaction
techniques, utilizing the state-of-the-art deep neural language models.

2.3 The Machine Learning Advancement in Natural Language Pro-
cessing

The decoding algorithms of text input intrinsically belong to the Natural Language Processing
(NLP) research. In general, the decoder of a intelligent keyboard contains two essential models:
the spatial model and the language model [19, 37, 43, 56]. The spatial model relates intended
keys to the probability distributions of the input information (such as touch coordinates) and other
features [9,33,119,132]. The distribution is then combined with a language model, such as an n-gram
back-off model [56], to correctly decode noisy touch events into the intended text [37,43]. Borrowing
the idea from speech recognition, the classic approach to combining the spatial model and language
model estimations is through the Bayes’ rule, as in Goodman et al. [43]. Practical keyboards
may also model spelling errors by adding letter insertion and deletion probability estimates in its
decoding algorithms [75].

Recent advance in Natural Language Processing (NLP) has demonstrated the power of neural
networks. A noticeable innovation of deep learning in NLP is the invention of the attention mech-
anism [10], which tries to mimic the human brain actions as our brains tends to focus on certain
salient pieces given the whole paragraph. Later on the Transformer model was proposed [93], and
became the standard NLP neural model because it achieved superior task performance with pure
attention-based architectures instead of using RNNs. The Transformer model has enabled giant
neural models such as GPT-2 [77], GPT-3 [17], BERT [27] and XLNet [115]. Deep language models
trained by neural networks has achieved significantly low perplexity [17, 27, 93], and the state-of-
the-art performances on many language understanding tasks, including text summarization [79],
document classification [76], question-answering [120] and conversation generation [17]. Unlike the

CHAPTER 2. RELATED WORK

2.4. Design Principles for Human-AI Interaction 8

traditional n-gram models, neural networks can take longer context into the modeling process,
which allows the model to understand and generate text on the semantic level.

NLP algorithms have also been applied to text input related areas. For example, Xie et al. [112]
presented an encoder-decoder RNN model for text correction. Their model was built upon a
sequence-to-sequence model for translation [10]. Neural models were also applied for gesture typing
decoding [1]. In fact, commercial products related to text input such as Gmail has already released
features like smart reply [55] and smart compose [20] that are backed by neural language models to
generate meaningful email responses. An important advance of deep learning neural model over the
traditional n-gram based model is the ability to incorporate longer context: instead of operating
on character, or word level, the neural models could take the whole phrase or paragraph into
consideration. As a result, neural language models not only yield more accurate results, but enable
the semantic-level understanding of the text, which was impossible for traditional methods. Many
of my previous work, including the TTC correction interaction, semantic level emoji suggestion,
and Voicemoji, infused the neural networks into the system design. I plan to extensively utilize the
neural network models in my proposed projects.

2.4 Design Principles for Human-AI Interaction

According to Beaudouin-Lafon [13], there are three paradigms for an interaction system: computer-
as-tool, which extends human ability by providing enable facilities; computer-as-partner, which “em-
bodies anthropomorphic means of communication” during the interaction; computer-as-medium,
which behaves as a medium for human communication. Powered by the advanced machine learning
algorithms and big data, text input technology is gradually moving from the the first paradigm,
computer-as-tool, towards the second, computer-as-partner : instead of generating symbols on char-
acter by character, it is now helping expressing thoughts on word, phrase, and semantic level. The
problem also emerges: how to balance the “user control” and “machine intelligence”? AI usually
behaves like a black box, introducing uncertainty into the interaction; text entry tasks, on the other
hand, require precision and predictability.

There are two main factors that affects the interaction quality: automation and controllability.
Automation measures how many tasks the machine is in charge of, and to what degree they are
controlled without the human participation. Controllability [78] reflects to what extent the users
can control the interaction process, and to what extent they can predict and refine the result.
Shneiderman [83] proposed a two-dimensional framework on the relationship of the two factors,
pointing out that a system with both high levels of controllability and automation is considered
as reliable, safe and trustworthy. There are multiple principles and guidelines on how to design
the interaction with general AI systems [2, 51, 72]. For example, Horvitz [51] summarized several
critical factors for mix-initiated user interfaces, such as employing dialog to resolve key uncertainties
and continuing to learn by observing; Amershi et al. [2] consulted with design practitioners and
proposed 18 guidelines for human-AI interaction, covering four stages of the interaction: initiation,
during interaction, when wrong and over time. Those guidelines also apply to text entry systems: for
example, the guideline learn from user behavior applies to the personalized user dictionary design in
mobile keyboards; the guideline employing dialog to resolve key uncertainties can be demonstrated

CHAPTER 2. RELATED WORK

2.4. Design Principles for Human-AI Interaction 9

on a auto-correction system by providing alternative candidates in the correction results. In order
to deliver the high-quality intelligent text entry experience, I applied those guidelines during the
process conducting my own research.

CHAPTER 2. RELATED WORK

Chapter 3

Models and Metrics for Intelligent
Text Input Methods

I present my work on the models and metrics to understand, quantify and evaluate the intelligent
text entry process, which serve as the foundation of my other research work. Specifically, I introduce
the transcription sequences (T-seq) model with new metrics based on the model for unconstrained
text entry evaluation, and the text entry throughput which measures the information transmission
rate of the text entry process, and combines the speed and accuracy into a single performance
metric.

3.1 The Transcription Sequence Model:
Enable Less Constrained Text Entry Evaluations

When seeking to quantify the performance of a new text entry method, creators can benefit from
pre-existing testbeds, rather than having to build their own evaluation tools. Such pre-existing
testbeds must be “method independent,” working without any feature-specific knowledge of the text
entry methods they evaluate. Therefore, such tools receive text and compute metrics (e.g., words
per minute [65], various error rates [88], and more) without knowing the mechanisms by which that
text is produced. The prevalent evaluation paradigm addressing this need is that of Soukoreff and
MacKenzie [87,88], which, in each text entry trial, presents a string that a participant transcribes.
The accompanying model encoding a participant’s text entry process is called the input stream (IS),
which is a strictly sequential record of each character entry or BACKSPACE. Unfortunately, the IS
model cannot accommodate many modern text entry behaviors, including using the mouse or arrow
keys to position the cursor, text highlighting and replacement, auto-correction, word prediction,
undo, and copy/paste, to name a few. Traditionally, the only means of error correction in the IS
paradigm is BACKSPACE, and only then from the end of the currently entered text.

To enable less constrained text entry evaluation process, I invented a new model, the transcription
sequence (T-seq) model, that supersedes the IS model for general-purpose method-independent
character-level text entry evaluation. The T-seq model makes abstraction of the text entry process

CHAPTER 3. MODELS AND METRICS FOR INTELLIGENT TEXT INPUT METHODS

3.2. Text Entry Throughput:
Towards Unifying Speed and Accuracy in a Single Performance Metric 11

into three parts: 1) the user’s actions on the text entry method, 2) the black box text entry method
itself, and 3) the resulting text output that enters the method-independent evaluation testbed. In
short, (1) acts on (2) to produce (3). The actions can be further abstracted into three categories:
insertion, deletion and substitution. A T-sequence is thus a sequence of snapshots of the entire
transcribed string after each text-changing action is taken by the user. I designed an algorithm,
called INFER-ACTION, to infer the action taken at each step by comparing every pair of successive
snapshots. After the whole action sequences are recovered by the algorithm, character-level metrics,
such as uncorrected error rate (UER), corrected error rate (CER) and total error rate (TER) can
be computed. Based on the T-seq model, new metrics are proposed, such as character per action
and correction efficiency, which offer new insights about the evaluation. Finally, I implemented and
open-sourced a web-based successor to the TextTest desktop application [108] called TextTest++
(Figure 3.1), which encapsulates the T-seq model and enables text entry innovators to study their
inventions on any platform or device capable of running a web browser.

Figure 3.1: TextTest++ is a new web-based text entry evaluation testbed that produces the traditional
metrics from the IS paradigm and the new metrics from the T-sequence paradigm

To evaluate the model, I conducted a laboratory experiment on three keyboards: a laptop keyboard,
an on-screen desktop keyboard and a smartphone touch keyboard. The results showed that the
model was capable of handling all modern text entry behaviors such as cursor-moving and auto-
correction. To validate the correctness of the INFER-ACTION algorithm, I further ran extra
experiments on the Dasher [102] gesture typing [59] and T9 [73] keyboards. The data from the two
experiments showed that results generated from INFER-ACTION matched 100% with the ground
truth, indicating that T-seq model was generalizable across different text entry methods.

3.2 Text Entry Throughput:
Towards Unifying Speed and Accuracy in a Single Perfor-
mance Metric

Human-computer input performance inherently involves speed-accuracy tradeoffs — the faster users
act, the more inaccurate those actions are. Therefore, comparing speeds and accuracies separately
can result in ambiguous outcomes: Does a fast but inaccurate technique perform better or worse
overall than a slow but accurate one? For pointing, speed and accuracy has been unified for

CHAPTER 3. MODELS AND METRICS FOR INTELLIGENT TEXT INPUT METHODS

3.2. Text Entry Throughput:
Towards Unifying Speed and Accuracy in a Single Performance Metric 12

over 60 years as throughput (bits/s) [24, 105], but to date, no similar metric has been established
for text entry. In modern text evaluation tasks, participants are instructed to “proceed quickly
and accurately” [88, 118]. However, every human actor has their own internal subjective speed-
accuracy bias, which may change with purpose and context. Thus, separate measures of speed
and accuracy will vary under different speed-accuracy conditions. The goal of this project is to
devise, theoretically and empirically, a robust performance measure for text entry that conveys
the information found in speed and accuracy measures, while also remaining stable across various
speed-accuracy biases.

Figure 3.2: Shannon’s information transmission model, with labels in bold mapping the model to the text
entry transcription process

I propose that text entry evaluations are describable in terms of Shannon’s model. A text input
system is, quite literally and conceptually, a communications channel in the information-theoretic
sense (Figure 3.2). Shannon’s information theory [80] should therefore shed light on the evaluation
of text input methods. Intuitively, the amount of information transmitted via a text input method
per unit time, termed throughput, reflects the input efficiency of the method. In a text entry tran-
scription task, the presented string (P) can be regarded as the information source; the transcribed
string (T) can be regarded as the information destination; and the system of human-plus-input-
method can be regarded as a discrete channel perturbed by noise, which are errors. Characters are
signals transmitted through the input process (e.g., typing), modified by noise and displayed on
the screen. From such an information transmission model, I derived a formula to calculate the text
entry throughput based on text entry speed and the uncorrected error rate. Specifically, the amount
of information transmitted from the source X to the destination Y during a text entry process was
defined as “mutual information” I(X ,Y), which is calculated as follows:

I(X ,Y) = H(X)−HY (X) (3.1)

H(X) represents the information, or “entropy” of the source, and HY (X) represents the conditional
entropy, which is called “equivocation” according to Shannon. It refers to the information lost
during transmission. By converting the error rate into transmission probabilities, the mutual infor-
mation of a text entry procedure can be calculated. As a result, the text entry throughput can be
calculated without requiring any extra information besides the speed (WPM) and accuracy (UER)
logs. To facilitate the usage of the metric, I open-sourced the script of calculating throughput from
TextTest++ logs.

CHAPTER 3. MODELS AND METRICS FOR INTELLIGENT TEXT INPUT METHODS

3.2. Text Entry Throughput:
Towards Unifying Speed and Accuracy in a Single Performance Metric 13

I conducted an in-lab experiment to explore the practical value of the metric. To manipulate dif-
ferent speed-accuracy conditions, I designed a game-like text entry experience, where participants
will gain scores when they met certain criteria, or loose scores when they failed to do so. Con-
ditions biased towards accuracy had more strict rules on how accurate the transcription should
be, while conditions biased towards speed encourage the participants to type fast without caring
too much about accuracy. The experiment showed that for the same person with the same text
entry method, throughput measure exhibited less variation compared to other text entry metrics
(including WPM, UER and AdjWPM) across different speed-accuracy conditions, suggesting that
the measure characterizes the communications channel itself, apart from a human actor’s particular
speed-accuracy bias. The results were validated via various statistical tests including the coefficient
of variation, non-parametric Friedman tests and confidence intervals estimated from bootstrapping.

In this chapter, I presented the transcription sequence model and the text entry throughput for
intelligent text entry evaluations, which enabled me to quantify the performance of different text
entry methods. I now present my work on intelligent text entry methods in the following chapters.

CHAPTER 3. MODELS AND METRICS FOR INTELLIGENT TEXT INPUT METHODS

Chapter 4

Intelligent Text Input Methods

Using machine learning algorithms, I design and implement text input interactions and systems
that operate beyond the character level manipulation. In this chapter, I present my work on a
phrase-level input system PhraseFlow, along with the work on mobile text editing interactions
Gedit and Type, Then Correct.

4.1 PhraseFlow:
Designs and Empirical Studies of Phrase-Level Input

Autocorrection has become an essential part of touchscreen smartphone keyboards. Due to the
small screen size relative to the finger width, fast typing on a smartphone without autocorrection
can produce up to 38% word errors [9,37]. To remedy the problem, given a sequence of touch points,
a keyboard decoder can use spatial and language models to find the best candidate and performs
correction on the typed text. Simulation studies show such auto-corrections can dramatically reduce
the error rate in touch keyboards [37]. However, word-level decoding has two major drawbacks.
First, at times it can be difficult for the decoder to determine if a word makes sense without
incorporating the future input context. For example, if a user types he loces, the keyboard may
correct loces to loves; however, if the user continues typing in Paris, the expected correction should
be lives. Not incorporating the future context can either lead to wrong corrections or fail to correct
the text. Second, space-related errors often cannot be handled well without future context. Word-
level decoding uses the space key tap as an immediate and deterministic commit signal, thus does
not afford the benefit of correcting for superfluous touch on it or alternative possible user intentions
such as aiming for the C V B N keys above the space key. As a consequence, space-related errors
such as th e, iter ational can not be properly handled. Furthermore, a word-level decoder often fails
to correct contiguous text without spaces such as theboyiscominghomenow, as it mainly consider
word candidates.

To address the problem, I designed PhraseFlow, a keyboard prototype that focused on designing and
studying the interfaces to support the phrase-level decoding. Phrase-level decoding may continue to
decode the touch points even if the space key is pressed, and outputs phrase candidates. PhraseFlow
aims to address three essential types of questions in the phrase-level input interaction:

CHAPTER 4. INTELLIGENT TEXT INPUT METHODS

4.1. PhraseFlow:
Designs and Empirical Studies of Phrase-Level Input 15

1. How to change and design the interface and interactions that match phrase-level decoding?

2. How does phrase-level input affect the user’s typing behavior and cognitive load?

3. What are the user reactions and experiences when using PhraseFlow as their daily keyboard?

To implement PhraseFlow, I modified the Finite State Transducer (FST) based decoder [75] of
Gboard to support phrase level decoding. Specifically, I disabled the reset action of the decoder
when the space was entered, and enlarged the decoding span to incorporate larger input context.
To explore the design space of PhraseFlow, I iterated on multiple options of: 1) visual correction
effects; 2) decoding commit gesture and behavior; and 3) suggestion displays. The first version
of PhraseFlow was with similar designs to the previous phrase-level input work [96, 97, 99], where
the keyboard displayed phrases as candidates, and correct the input text on every nth space the
user typed. The study results showed that phrase-level input with such designs introduced extra
cognitive loads to the user, where the users were constantly distracted by the literal errors they
typed, and had to spend time checking the results after the keyboard corrected multiple words at
once. By incorporating empirical study results from the iteration, I improve the keyboard design
by adding an first-in-first-out input buffer to make the keyboard 1) only correct one word at a
time after the space was pressed; 2) be able to incorporate newer text in the decoding context in a
continuous way. The keyboard also displayed real-time correction in place, reducing the feeling of
uncertainty of the user. Figure 4.1 demonstrates the correction interaction of PhraseFlow.

Figure 4.1: The final version of PhraseFlow. (a) When the user typed “id” (but meant “is”) , (b) it was
first corrected to “I’d”after the first space press. However, the correction was not committed (it stays in
the buffer). (c) After the user typed text “it”, the word was finally corrected and committed as “is” on the
second space press

Computational studies show that phrase-level input reduces the error rate of auto-correction by
over 16%, and an in-lab study shows that users could adopt PhraseFlow quickly, resulting in 19%
fewer error without losing speed. To test the user acceptance of the keyboard, I conducted a six-
day deployment study with 42 participants. During the study, participants used PhraseFlow as
their primary keyboard, and filled a feedback survey every other day on their preference, perceived
accuracy and perceived speed of using PhraseFlow. The survey results showed that overall 78.6% of
the participants would like to have phrase-level typing in their future keyboards, in comparison to
7.1% of the participants disliked the feature. Overall, the study results suggest phrase level input
is a promising feature for future mobile keyboards.

CHAPTER 4. INTELLIGENT TEXT INPUT METHODS

4.2. Gedit:
Keyboard Gestures for Mobile Text Editing 16

4.2 Gedit:
Keyboard Gestures for Mobile Text Editing

On touch-based mobile devices, text editing could be a tedious process, which still largely borrows
from desktop mouse interactions. Modeless editing operations [91] such as copy, paste and cut are
often handled in a touch+widget [38] manner. However, the cursor is positioned using tap gestures,
which are error prone because of the fat finger problem [100], especially when text characters are
small [6]. Also, users must press long enough to exceed a time threshold to trigger selection mode,
and later select “copy” in a popup menu to complete the operation. These extra steps significantly
slow text editing on mobile touch screens. Moreover, if an editing operation happens during the
text entry process, one must lift one’s finger from the keyboard area to directly interact with the
text input area, introducing unnecessary round-trips [36,46,49] and breaking the flow of typing.

To improve the editing experience on mobile devices, I designed a gesture-only system, Gedit,
consisting of a set of on-keyboard gestures for cursor movement and text manipulation commands.
Gedit contains ring and flick gestures for cursor control, bezel gestures for entering “editing mode,”
and letter-like gestures for copy, paste, cut, and undo. In editing mode, what was cursor movement
becomes text selection. Editing gestures can be performed with one or two hands. For cursor
movement, the user could perform a circular gesture clockwise or counter-clockwise to move the
cursor left or right, or perform flick gestures to move the cursor up or down. For manipulation
options, the user could perform a bezel gesture — swiping from the edge of the screen to enter the
edit mode, and draw characters with another hand to execute commands. For one-handed mode,
the bezel gesture and the character drawing gesture are combined into one command, as shown in
Figure 4.2.

Figure 4.2: Some Gedit editing gestures in one-handed use. All gestures start from the right edge: (a) a
flick left to select a word; (b) a clockwise ring gesture selects characters to the right of the text cursor; (c)
the copy gesture “C”; and (d) the paste gesture “V”

To evaluate the efficiency and the usability of Gedit, I conducted a user study comparing it with
the de facto touch+widget method. To encourage participants to use Gedit’s gestures and editing
features, I designed a set of phrases that contain several appearances of a common string that is
either rare (e.g., “Tchaikovsky”) or long (e.g., “San Francisco”), which encouraged participants to
use copy/cut and paste functions during typing. Results showed that gesture interactions sped
up the text editing process compared to the de facto touch+widget editing approach of tapping
keys and the input area to position the cursor. Participants especially appreciated and enjoyed the
capability that Gedit’s gestures offered for one-handed use.

CHAPTER 4. INTELLIGENT TEXT INPUT METHODS

4.3. Type, Then Correct:
Intelligent Text Correction Techniques for Touch Screens 17

4.3 Type, Then Correct:
Intelligent Text Correction Techniques for Touch Screens

Besides the slow editing process, another bottleneck for touch screen text input lies in the correction
process. On mobile touch-based devices, text correction often involves repetitive backspacing and
moving the cursor with repeated taps and drags over very small targets. A potentially fascinating
premise is thus What if we can skip positioning the cursor and deleting errors? Given that the
de facto method of correcting errors relies heavily on these actions, such a question is subtly quite
radical. What if we just type the correction text, and apply it to the error?

Figure 4.3: Our three interaction techniques. Drag-n-Drop: (a.1) type a correction and then touch it to
initiate correction; (a.2) drag the correction to the error position. The touched text is highlighted, and the
correction shows above the magnifier; (a.3) drop the correction on the error to finish. Drag-n-Throw: (b.1)
dwell on a word from the suggestion list to initiate correction. The corresponding text will display above
the finger; (b.2) flick the finger towards the area of the error: here, the flick ended on “the”, not the error
text “technical”; (b.3) the algorithm figures out the error successfully, and confirming animation appears.
Magic Key: (c.1) tap the magic key (the circular button) to trigger correction. Here, “error” is shown as the
nearest possible error. (c.2) drag left atop the magic key to show the next possible error in that direction.
Now “magical” is highlighted. (c.3) tap the Magic Key again to commit the correction “magic”.

The concept, called “Type, Then Correct” (TTC), inspired me to develop three novel text correction
techniques. The first technique, Drag-n-Drop, is a simple baseline technique that allows users to
drag the last-typed word as a correction, and drop it on the erroneous text to correct substitution
and omission errors [108]. The second technique, Drag-n-Throw, is the “intelligent” version of
Drag-n-Drop: it allows the user to flick a word from the keyboard’s suggestion list towards the
approximate area of the erroneous text. The deep learning algorithm finds the most likely error
within the general target area based on the thrown correction, and automatically corrects it. Drag-
n-Throw is faster than Drag-n-Drop, because the user does not need to drop the correction on the
error location. Unlike the above two techniques, the third technique, Magic Key, does not require
direct interaction with the text input area at all. After typing a correction, users simply press a

CHAPTER 4. INTELLIGENT TEXT INPUT METHODS

4.3. Type, Then Correct:
Intelligent Text Correction Techniques for Touch Screens 18

dedicated Magic Key on the keyboard, and the algorithm highlights possible error words according
to the typed correction. One can then step through the possible error words by directionally
dragging atop the Magic Key. When the desired error word is reached, users tap the Magic Key
again to apply their correction. All three of our interaction techniques require no movement of
the text cursor and no use of backspace. The illustration of each interaction technique is shown in
Figure 4.3.

The Drag-n-Throw and Magic Key rely on NLP algorithms to detect possible error candidates
given the correction. I applied a recurrent neural network (RNN) encoder-decoder model which
was widely used in translation tasks. The encoder contains a character-level convolutional neural
network (CNN) [57] and two bi-directional gated recurrent unit (GRU) layers [22]. The decoder
contains a word-embedding layer and two GRU layers. To collect large amount of text correction
data, I applied several artificial perturbations to online-review text datasets [131], such as typo
simulation and word deformation. The model achived 75.68% and 81.88% accuracy on the CoNLL
2013 [71] and the Wikipedia revision datasets [123], respectively. To evaluate the interactions in
real settings, I compared the TTC interactions with the de facto cursor-based correction interaction
in a lab study. Two types of tasks were conducted: a correction task where participants needed to
correct the given erroneous phrases, and a free composition task where the participants composed
messages freely without correction and corrected the errors after they finished composing. The
results showed that the two intelligent interactions, Magic Key and Drag-n-Throw, performed
significantly faster than the cursor-based interactions in the correction task, and were preferred
by participants. In the composition task, Drag-n-Throw achieved 87.9% success rate while Magic
Key achived 97.0% success rate.

CHAPTER 4. INTELLIGENT TEXT INPUT METHODS

4.3. Type, Then Correct:
Intelligent Text Correction Techniques for Touch Screens 19

4.3.1 JustCorrect:
Intelligent Post Hoc Text Correction Techniques on Smartphones

TTC inspired a follow-up work on mobile text correction interaction: JustCorrect [25], which was
led by Wenzhe Cui from Stony Brook University, and I was a co-author of the project. JustCorrect
employs the same concept as TTC, and simplifies the correction interaction one step further: the
keyboard directly assumes the best error location based on the input correction, without the need
to specify where the error is. In this way, after entering the correction at the end, the user can
simply press a button to correct the error. Alternatively, the user could switch the entry mode (for
example, switch from touch typing to gesture typing) to enter text. The keyboard will automatically
regard the text as the correction and apply it to the error. The correction interaction of JustCorrect
is shown in Figure 4.4. The lab experiment showed that correction performed by JustCorrect were
faster than TTC interactions.

Figure 4.4: (1) The user enters a sentence with an error jimo using tap typing; (2) To correct jimo to jumps,
they can either tap-type jumps and press the editing button (2a), or switch to gesture type jumps(2b). (3)
JustCorrect then substitutes jimo with jumps. Two alternative correction options are also presented. The
editing procedure involves no manual operations except entering the correct text.

The work in this chapter demonstrated that text input methods can benefit from the power of
advanced machine learning algorithms. The FST support for continuous decoding enabled the
phrase-level input interaction, which otherwise could not have been successful; Without gesture
recognition algorithms, the interaction of Gedit could not have been implemented; Using neural
network language models, I was able to train the algorithm on millions of text data from the real
life, and make the keyboard recognize semantic and grammatical errors in the TTC interactions.
In the next chapter, I further combine intelligent methods with non-textual symbol (emoji) input
methods, exploring the applicability in computer-based communication and accessibility scenarios.

CHAPTER 4. INTELLIGENT TEXT INPUT METHODS

Chapter 5

Intelligent Entry Methods for Emojis

In this chapter, I present an empirical study of comparing the effect of the emoji suggestion mech-
anism on people’s communication experience. I then introduce a speech-based emoji entry system
for blind and visually impaired users.

5.1 Comparing Lexical and Semantic Emoji Suggestions

Most forms of text-based computer-mediated communication (CMC) lack non-verbal expressions
like vocal tones, facial expressions, and gestures that are useful in face-to-face conversations. How-
ever, several studies have shown that emojis can facilitate affective communication [23, 53, 107].
Emojis are already widely used in text-based CMC, with nearly every instant messaging platform
supporting their entry. As there is a large and growing set of emojis, manually searching for and
selecting emojis can be a tedious task interrupting the flow of text entry. Commercial products that
automatically suggest emojis have helped the emoji entry process become more seamless [52, 101].
These products usually come in two variations — lexical and semantic suggestions. With lexical
suggestions (e.g., Gboard), relevant emojis appear in a candidate list based on recent keywords
typed by the user. With semantic suggestions (e.g., Dango [52]) proposed emojis are based on
the meaning of the message’s content rather than on specific keywords. Examples of different
suggestions are shown in Table 5.1.

Table 5.1: Examples of lexical and semantic emoji prediction. With lexical prediction, the suggested emojis
are related to the literal meaning of certain keywords. With semantic prediction, the suggestions focus on
the meaning of the sentence

Sentence Lexical Semantic

I enjoyed the fish tonight very much!

I love him but he just ignored me...

I’m tired of “happy birthday”

CHAPTER 5. INTELLIGENT ENTRY METHODS FOR EMOJIS

5.2. Voicemoji:
Speech-based Emoji Entry System 21

Although emojis themselves are known to enrich conversations [23,53], the role that different emoji
suggestion systems play has not been explored. Instead, prior work on suggestion systems has
focused on retrieval precision and recall [12, 29, 31]. But how do different suggestion mechanisms
influence emoji usage? How do they differ in terms of usability? How do they affect the chat
experience?

To investigate these questions, I implemented a keyboard capable of offering both lexical and se-
mantic emoji suggestions. I conducted an in-lab study with pairs of strangers using keyboards with
three emoji suggestion mechanisms: no suggestions, lexical suggestions, and semantic suggestions.
The participants were instructed to have conversations with each keyboard for 10 minutes on any
topic, but they could also use the “recent activity” as a starting point. The results showed that
there was no significant difference in the number of total characters and emojis entered by the
participants in different conditions, indicating that the chatting experience between strangers is
not influenced by the emoji use. The finding was not explored by previous literature focusing on
communication between friends and family members [23, 53]. However, participants using the se-
mantic level emoji suggestion keyboard picked significantly more emojis from the suggestions than
those using the lexical suggestion keyboard.

To evaluate the emoji usage in daily settings, I also conducted a 15-day field deployment. The de-
ployment contained three 5-day periods, where in the first and the last period participants used the
keyboard with no emoji suggestions, and in the second period the participants used the keyboard
with either lexical or semantic emoji suggestions. I found that emoji suggestion systems increased
emoji usage overall, with users picking more emojis via semantic suggestions versus lexical sugges-
tions or no suggestions.

From both studies, I found that although suggestion mechanisms did not have a significant effect
on the participants’ perceived chat experience, they facilitated users’ needs of inputting emojis in
various ways: 1) semantic suggestions were perceived as more relevant to the message content, while
lexical suggestions were perceived as containing more unusual emojis 2) the semantic suggestions
served as a clue to the tone of the message and even changed the user’s input behavior in some
cases.

5.2 Voicemoji:
Speech-based Emoji Entry System

As emojis become an essential element of online communications including text messaging and
social media posts, blind or low vision (BLV) users also encounter more emojis online. According
to a recent study by Tigwell et al. [92], 93.1% of BLV users encounter emojis each month, and 82.7%
of them utilize emojis at least once a month. However, due to emojis’ similarity to images and the
lack of accessibility support for screen readers [92], current emoji entry methods, including emoji
keyboards, emoji shortcuts, and built-in emoji search are cognitively demanding and unreasonably
time-consuming for blind and low vision (BLV) users. Such limitations hinder BLV users from using
emojis easily, causing social exclusion for BLV users, and reducing their communication efficacy [95].
Through my interviews with BLV users, I find that there are four major challenges of current emoji

CHAPTER 5. INTELLIGENT ENTRY METHODS FOR EMOJIS

5.2. Voicemoji:
Speech-based Emoji Entry System 22

entry methods: 1) the entry process is time-consuming; 2) the results provided by the methods are
not consistent with users’ expectations; 3) there is a lack of support for discovering new emojis;
and 4) there is a lack of support for finding the right emojis. In summary, the current state of
searching for and inputting emojis for BLV users is inaccessible, tedious, and exclusionary.

In order to improve the emoji entry experience for BLV users, I designed and implemented Voice-
moji, a voice emoji entry system that supports: 1) voice-based semantic-level emoji search, initiated
by speaking the phrase “emoji search” + description + “emoji” (for example, “emoji search i am
hungry emoji”) 2) direct emoji entry with keywords, initiated by speaking the phrase “insert” +
description + “emoji” (for example, “insert tornado emoji”) 3) context-sensitive emoji suggestions,
and 4) manipulation of emojis with voice commands, such as changing the emoji color or skin tone.
Specifically, Voicemoji detects a set of keywords to trigger the emoji input function, and utilizes the
results from the Google search engine to find the most relevant emojis. Powered by deep learning,
it also suggests emojis based on the spoken content. With Voicemoji, the user can use ambiguous
descriptions, such as, “ocean animal emoji,” to get a group of emojis including squid , octopus

, and tropical fish . Following a similar approach, exploration and learning of new emojis
is also possible, which is exceptionally difficult with current emoji input methods. An interaction
case of Voicemoji is shown in Figure 5.1.

Figure 5.1: The flow of using Voicemoji. Voicemoji is a web application that allows the user to speak text
and emojis. It also provides context-sensitive emoji suggestions based on the spoken content

Additionally, Voicemoji, at present, supports a rich emoji set accessible through two of the three
most spoken languages in the world,1 Chinese and English. This feature enhances the generaliz-
ability of the solution in two respects: (1) language independence (i.e., the method can apply to
multiple languages); (2) emoji independence (i.e., the method can output all emojis in the current
emoji set). I also open-sourced the implementation to support the research community and provide
a platform for contributions from like-minded researchers and developers.

To understand the performance of Voicemoji and how it affected the emoji entry experience for
BLV users, I conducted a remote controlled study with 12 BLV users from the US and China.
In the study the participants were instructed to input emojis using either the iOS keyboard or
Voicemoji. They also evaluated the emoji suggestion feature by speaking phrases via Voicemoji
and selecting the suggested emojis that they thought were relevant. The results showed that

1https://www.babbel.com/en/magazine/the-10-most-spoken-languages-in-the-world

CHAPTER 5. INTELLIGENT ENTRY METHODS FOR EMOJIS

5.2. Voicemoji:
Speech-based Emoji Entry System 23

Voicemoji significantly reduced entry time by 91.2% compared to the Apple iOS keyboard and was
preferred by all participants. Participants also found the suggested emojis were mostly relevant.
Their feedback implied that Voicemoji allowed them to conveniently enter emojis, provided support
for exploring and learning new emojis and enriched their online communication experience.

CHAPTER 5. INTELLIGENT ENTRY METHODS FOR EMOJIS

Chapter 6

Proposed Work

My previous work mainly focused on developing intelligent text input systems on mobile devices. In
my proposed work, I would like to expand the using scenario to the everyday ubiquitous computing
environment, where an input interaction is not limited on a single device’s input space and can
support cross-device input tasks (ubiquitous), is flexible to perform in mobile settings (flexibility),
and can be employed on various surfaces (generalizability). Specifically, I propose TypeAnywhere, a
QWERTY-based text entry interaction on any surface; TypeAnywhere One, a one-handed extension
of TypeAnywhere; and AnchorKeyboard, a non-visual keyboard for large touch screens.

6.1 TypeAnywhere:
A Ubiquitous QWERTY Text Entry Solution

Computing now has entered an ubiquitous era [104]: from IoT devices to AR/VR, computers are
becoming every part of our life. As a fundamental interaction to communicate with the devices,
there is yet no unified text entry solution that is low-friction and always available. Existing text
entry solutions either are not mobile enough (e.g. the hardware keyboard), or requires the user to
learn extra typing skills (e.g. [59, 64, 90, 117]), or are relatively low-throughput (e.g. watch-based
methods [21, 42]). While speech based input is an alternative option, it might be not socially
acceptable for certain situations.

QWERTY-based touch typing on physical keyboards remain the most common text input skill of
computer users [28] as it utilizes multiple hands and fingers. Although the layout is not invented for
optimal speed performance [26], the fact that people are so familiar with the layout has motivated
a series of text entry research to build upon QWERTY [45,99,114,118]. I thus want to leverage and
resemble the physical keyboard typing experience in this project yet without the mechanical keys:
what if we can type on any surface on an imaginary QWERTY just like on a physical keyboard?

I have already started to exploring the answer of the question by developing TypeAnywhere, a
QWERTY-based text entry solution for everyday use. The concept illustration is shown in Figure
6.1. TypeAnywhere uses wearable sensors on two hands that detect the finger tap actions, a decoder
that converts the touch sequence into text, and a corresponding interface for text editing. The

CHAPTER 6. PROPOSED WORK

6.1. TypeAnywhere:
A Ubiquitous QWERTY Text Entry Solution 25

hardware is the commercial Tap Strap 1 that uses accelerometers for tap detection. The detected
finger tap sequence is fed to a neural decoder modified from the BERT model [27], which then display
the output text on the typing interface. Inspired by the work of “Type, Then Correct” [126], I also
designed a text correction interaction for TypeAnywhere without the need of cursor navigation.

Figure 6.1: TypeAnywhere core concepts. (a) Users wear devices on their fingers that detect the finger
taps. (b) With TypeAnywhere, the user can type on any surface such as the tabletop or their lap. (c) Users
type with their own QWERTY key-to-finger mappings, resembling a physical keyboard typing experience

Typing interaction The hardware interface is two wearable devices called Tap Strap, which has five
connected rings that can be worn on each finger (Figure 6.2). Each ring contains an accelerometer
that detects when the finger performs a tap action, which is reported to have an over 98% detection
accuracy. According to my knowledge, Tap Strap is the most accessible yet accurate device for
finger tap detection on the market. Because of its small form factor, the user could wear the device
comfortably enough.

Figure 6.2: (a) The Tap Strap device (b) Wearing two devices in TypeAnywhere

For the typing interaction, TypeAnywhere resembles the exact typing interaction on a physical
keyboard: the user performs finger taps based on her own finger-to-key mapping, and the most
possible character would be output on the user interface. The user could perform finger taps on
hard surfaces such as tabletops and walls, or soft surfaces such as laps. The tap of the two thumbs

1https://www.tapwithus.com/

CHAPTER 6. PROPOSED WORK

6.1. TypeAnywhere:
A Ubiquitous QWERTY Text Entry Solution 26

are mapped to the space key, as most people use thumb for space-key pressing [34]. Essential text
editing functions are also mapped to certain multi-finger chords show in Figure 6.3.

Figure 6.3: The tap chords for text editing functions of TypeAnywhere. For selection gestures, the user
can either tap the thumb and index fingers on a surface, or perform a pinch gesture.

Training the language decoder The neural language model used for decoding the tap input is based
on the BERT model [27]. Specifically, I added a linear classification layer on top of the BERT-base
model to generate the character for each finger tap. The implementation is based on the open-
sourced transformers library [110]. The model employed the bidirectional transformer structure [93],
and was pretrained with masked language model and next sentence prediction tasks on 3.3 billion
words [27]. Given the finger sequence, the model decodes it to text in real time. I trained multiple
models with different finger-to-key mappings so that the users did not need to change their typing
habit on the physical keyboard.

User study for evaluation To evaluate the performance of TypeAnywhere in real settings, I conducted
a longitudinal user study. Although TypeAnywhere used the QWERTY typing interaction, I antic-
ipated that it still took time for the user to get used to the device and the feeling of typing without
a keyboard. I recruited 5 participants (age 23 - 28, all male) for the study via word-of-mouth and
online forums, and required that the participants were able to perform QWERTY typing without
looking at the keyboard, and were consistent with their finger-to-key mappings (e.g. always use the
same finger to type a letter). Due to the COVID-19 situation, it was extremely difficult to recruit
eligible participants, I thus also included one participant (I refer him as P1) who was not consistent
with his finger-to-key mapping, but was able to commit his time for the study. P1 could type on a
physical keyboard without looking at it, but he used multiple fingers to press certain letters such
as ”uio” for different words. Therefore we can regard P1 as a novice learner for TypeAnywhere, as
he needed to learn a fixed key-to-finger mapping for the study.

The study was a 5-day longitudinal study. On each day, the participants first started to practice
typing with the device on the web application. The phrase sets for practice and test were from the
Mackenzie phrase set [66] and the Enron email phrase set [98]. I shuffled and devided them so that
the phrases were different for practice and test, and also different for each day’s evaluation. After
30 minutes’ practice, they started the evaluation by typing 20 phrases different from the training set
as fast and accurately as possible. their typing behavior was logged with the T-seq model [127]. On
day 1, the participants performed the typing evaluation on their physical keyboards as a baseline.
On day 5, they also performed a tapping-on-laps evaluation with TypeAnywhere. The evaluation

CHAPTER 6. PROPOSED WORK

6.2. TypeAnywhere One:
One-handed TypeAnywhere 27

for the physical keyboard session contained 30 phrases, while the evaluation for the on-lap session
contained 20 phrases which was the same as the tabletop condition.

Evaluation results Participants’ average typing speed is shown in Table 6.1. The pick-up speed on
day 1 is 33.33 WPM, implying that participants learnt the interactions without too much effort.
The speed is increasing each day and the trend is still growing. Compared to the keyboard condition
(70.36 WPM), participants reached 59.67 WPM with TypeAnywhere on the last day. The 15.2%
(10.69 WPM) difference between the tabletop and keyboard conditions is smaller than the previ-
ously reported difference [34], which means that the users were able to type with TypeAnywhere
fast as closely as their keyboard typing.

I also collected the feedback from participants during the debriefing session. The most mentioned
benefit of TypeAnywhere was that the user no longer need to move the finger when typing: ”I can
just tap the finger without caring about whether the position was right or not” (P3). The other
benefit was that the user could perform typing on any surface similar to typing on a keyboard,
without the need to ”learn a new coding system” (P2).

Table 6.1: The average performance on each day of all participants with TypeAnywhere. Keyboard and
on-lap conditions are also listed. The values in parentheses are the standard deviation.

Day 1 Day 2 Day 3 Day 4 Day 5 Keyboard On-lap
Speed (WPM) 33.33 (12.25) 38.79 (11.72) 45.49 (12.81) 56.07 (14.33) 59.67 (16.64) 70.36 (21.69) 40.01 (12.88)

Character
Error Rate (%) 1.43 (10.14) 1.40 (2.91) 0.33 (1.39) 0.90 (2.57) 1.03 (2.79) 2.84 (5.10) 1.22 (3.79)

6.2 TypeAnywhere One:
One-handed TypeAnywhere

While typing with two hands on any surfaces has already lowered the bar of text entry in ubiquitous
environments, there are situations where using two hands is not convenient or possible, such as
situational impairments where one hand is occupied with another task, or for a person with motor
impairments. To further complete the “ubiquitous text input” picture, I propose TypeAnywhere
One, the one-handed version of TypeAnywhere.

Interaction design As the QWERTY layout is designed for two hand usage, I need to redesign the
finger-to-key mapping for TypeAnywhere One. However, similar to the design choice of TypeAny-
where, I do now want to fix the mapping or invent a new mapping scheme, as that will take a long
time for the users to learn. The user should still somehow be able to reuse their typing mapping
on physical keyboards in one-handed typing. As a result, I decided to use the “mirrored” version
of the QWERTY layout when it comes to the other hand. Specifically, when the users are entering
the keys on the same side of their hand, they just follow the same key-to-finger mappings on the
physical keyboard; when they enter keys which are normally entered by the other hand, they will
use the same finger, but the different hand. For example, if one types the letter “A” with the little
finger on the left hand, then one will type the same character with the right little finger when using
TypeAnywhere One with the right hand. According to Grudin [47], the second common substitution
error category for physical keyboard typing is homologous error, meaning that the letter typed by

CHAPTER 6. PROPOSED WORK

6.3. AnchorKeyboard:
Non-visual Keyboard for Large Touch Screens 28

the same finger in the same position but with the wrong hand, which accounted for 10% of the
overall errors in the data. As a result, it might be more natural and intuitive for the users to type
“mirrored” letters with the same finger.

Other than the finger-to-key mapping, I also need to design a set of gestures for selection. Because
the interaction only uses five fingers, a finger sequence can be mapped to many word candidates.
Hence it is essential to design selection interactions that can effectively lower the uncertainty of
options.

Model design I will reuse the main neural network structure from TypeAnywhere. However, based
on the results from my preliminary simulation, directly applying the model to one hand’s finger
sequence decreased the accuracy by around 8% and seldom provided the expected words in real
settings. There are two ways to address the problem: 1) by fine-tuning the model with detailed
structures and more data; 2) by designing disambiguation gestures to incorporate easy human-
in-the-loop to select the word collaboratively. I will explore both directions and evaluate their
performance.

User study The evaluation user study will be similar to that of TypeAnywhere, where the user
will perform one handed typing on a hard surface and a soft one (possibly laps). For the hard
surface condition, they will perform typing tasks twice with left and right hands. Ideally it will be
a longitudinal study where I can further evaluate the learning effect.

6.3 AnchorKeyboard:
Non-visual Keyboard for Large Touch Screens

Ten-finger text entry on large touch screens has been extensively studied, including the motor pat-
terns [34], layout personalization [33] and novel decoding algorithms [82]. However, existing touch
screen keyboards all require certain degree of visual attention, such as word candidate selection,
during the interaction. For blind and visually impaired (BVI) users, they could not benefit from
those keyboards. Currently, they use either on-screen keyboards with screen readers, or braille
keyboards for typing on large touch screens, which is similar to their text entry interactions on
mobile devices. Other solutions, such as using a hardware keyboard or overlay [54], reduce the
flexibility and mobility because one has to carry the device around and the interaction position
is fixed; yet voice input is sometimes not socially appropriate, and suffers from privacy concerns.
In sum, the advantage of the large input space is not fully utilized. On the other hand, more
commercial devices are offering only large touch screens as their input, such as the Surface Neo 2,
ThinkPad X1 Fold 3, and most commonly, public kiosks. When using those devices, sighted people
might also shift their visual attentions on other tasks while typing. Hence an accurate, robust yet
easy-to-use non visual keyboard is needed for large touch screens.

The AnchorKeyboard is thus to address the issue by enabling non-visual QWERTY style text entry
on large touchscreen. The core idea is to identify the typing finger using the touch information
relative to other fingers: the user rests all fingers on the screen: when typing a letter, only the

2https://en.wikipedia.org/wiki/SurfaceNeo
3https://www.lenovo.com/us/en/thinkpad-x1-fold

CHAPTER 6. PROPOSED WORK

6.3. AnchorKeyboard:
Non-visual Keyboard for Large Touch Screens 29

corresponding finger leaves and taps. In this way, other fingers can serve as anchors to identify
the typing finger. The exact key can be inferred through the landing point of the finger touch,
and can be adapted through time by applying machine learning algorithms. There is thus no fixed
keyboard zone where the user has to visually pay attention to, and the user can just use their own
finger-to-key mappings same as the physical keyboard, leveraging existing typing skills.

Keyboard design With anchors, the typing finger can be easily identified. However, we still need
to decide which key the user is pressing. To solve the issue, I first applied linear regressions on
the anchor points to determine the mid-row lines. Then based on the touch distance to the lines,
the keyboard can determine the row of the key with empirically defined thresholds. As the typing
proceeds, the keyboard can collect more touch points of each key, as shown in Figure 6.4. I then
use those points to establish a personalized Bayesian spatial model to determine the probability of
each key when a tap happens; the model keeps updating as it collects more data. The preliminary
evaluation on my own data showed 96% accuracy with the proposed algorithm. I plan to evaluate
the algorithm on more participants.

Figure 6.4: Illustration of the process of assigning a touch point to a key. AnchorKeyboard requires the
user to first put all four fingers of a hand on the touch screen, and finds the homerow using linear regression
with touched points. When a finger types, it determines the row of the touched point (blue dot in the figure)
by its distance to the home row. When enough touch data is collected for a key, it will then build a Bayesian
spatial model and assign the probability of each touch point using the model

Besides only inputting English alphabet letters, the keyboard should also be able to enter numbers
and special characters as a complete text input system. I added mode switch gestures for switching
between letter/punctuation/number modes, and designed simple swipe gestures for switching be-
tween upper/lower case of the letters. In the future, I plan to implement handwriting recognition
systems for punctuation input, as it was proved effective for certain characters [32].

Keyboard evaluation I will first perform an offline evaluation task, where I collect typing data from
the users and simulate the decoding algorithms on it. I will then improve the algorithm and perform
the evaluation on two groups of people: the sighted users and BLV users. The procedure would
be similar: transcribing text according to a presented string. However, I will also include special
punctuation and numbers in the test phrase set to examine the gestural design. The experiment
will also compare AnchorKeyboard with other touch-screen keyboards, such as a visible on-screen
keyboard for sighted users, and a keyboard with screen readers for BLV users.

CHAPTER 6. PROPOSED WORK

Chapter 7

Conclusions

Utilizing advanced AI algorithms, the text input interactions can be made natural and effortless
to help users with the communication with machines beyond the traditional desktop situations.
This dissertation will demonstrate intelligent text input systems in a full spectrum, including the
entering and editing process of text, and the entering process of emojis. Furthermore, the proposed
work focuses on providing text entry solutions for the ubiquitous computing environment, which
might become prevalent in the near future. In short, the dissertation contributes to the field of
HCI by demonstrating the thesis:

Artificial intelligence can enable and improve advanced text input interactions, including
the entering and editing of text1, and the entering of emojis2; intelligent text interactions,
in turn, warrant new text entry metrics for their evaluation3.

7.1 Contributions

The specific contribution of this dissertation include (proposed future contributions in italics):

7.1.1 Theoretical Contributions

• The transcription sequences (T-seq) model for unconstrained text evaluations. By comparing
adjacent strings within a transcription sequence, we can compute all prior text entry metrics,
reduce artificial constraints on text entry evaluations, and introduce new metrics [127] (section
3.1).

• The text entry throughput, a metric that unifies the speed and accuracy. Text entry throughput
is derived from the information theory [80], and it is not sensitive to the speed-accuracy trade-
off [130]. The script of computing text entry throughput is open-sourced 4 (section 3.2).

1Demonstrated in Chapter4, 6
2Demonstrated in Chapter5
3Demonstrated in Chapter3
4https://github.com/DrustZ/Throughput

CHAPTER 7. CONCLUSIONS

7.1. Contributions 31

7.1.2 Artifact Contributions

• The TextTest++ web platform for conducting text entry evaluation tasks. TextTest++ pro-
vides interface and evaluation metrics based on the T-seq model and the text entry throughput.
The implementation is open-sourced 5 (Chapter 3).

• The design and implementation of a phrase-level input method, PhraseFlow. PhraseFlow
explores various design options through extensive studies to minimize the cognitive load of
the user, and improve the practical usability of the phrase-level input [129] (section 4.1).

• The design and implementation of Gedit, a set of on-keyboard gestures for convenient text
editing on mobile devices. Gedit enables the user to execute cursor moving and text manip-
ulation commands with gestures without leaving the keyboard area, and supports one- and
two-handed modes [128] (section 4.2).

• The concept of Type, Then Correct (TTC) for text correction interaction on touch screens.
Instead of the traditional cursor-based text correction interaction, TTC allows the user to
type the correction and apply it to the error text without moving the cursor [126] (section
4.3.

• The implementation of TTC concept with three novel correction interactions: Drag-n-Drop,
Drag-n-Throw and Magic Key. The later two interactions utilize a neural network model
for identifying error candidates. The implementation of the model is open-sourced 6 (section
4.3).

• JustCorrect, an extension of the TTC concept. Justcorrect further reduces the need of man-
ually specifying the error location during the correction [25] (section 4.3).

• Voicemoji, a speech-based emoji entry interaction. Voicemoji contains several emoji entry
commands and provides semantic emoji suggestions to support new emoji exploration. The
implementation of Voicemoji is open-sourced 7 [125] (section 5.2).

• TypeAnywhere, a text-entry interaction for ubiquitous computing settings. By detecting the
finger taps with wearable devices, TypeAnywhere decodes the tap sequence into text with a
neural network model, enabling users to perform QWERTY-style text entry on any surface
with their own finger-to-key mappings (section 6.1).

• TypeAnywhere One, a one-handed text entry interaction similar to TypeAnywhere. TypeAny-
where One uses mirrored layout for a hand to type the characters on the other side of the
keyboard (section 6.2).

• AnchorKeyboard, a non-visual QWERTY keyboard for large touch screens. AnchorKeyboard
uses the fingers on the screen as anchors to identify the typed finger, and utilizes machine
learning algorithms to determine the typed letters (section 6.3).

5https://github.com/DrustZ/TextTestPP
6https://github.com/DrustZ/CorrectionRNN
7https://github.com/DrustZ/VoiceEmoji

CHAPTER 7. CONCLUSIONS

7.2. Schedule 32

7.1.3 Empirical Contributions

• The evaluation of human behaviors using phrase-level input keyboard PhraseFlow.

• The series of usability studies on the intelligent text entry interactions including the Type,
Then Correct, Gedit, and Voicemoji.

• In-lab and deployment studies on comparing the effect of lexical and semantic emoji suggestion
mechanisms on online communication [124] (section 5.1).

• Interviews to understand the current emoji entry experience of blind and low vision (BLV)
users on mobile devices [125] (section 5.2).

• Evaluations on the performance, learnability and feasibility of TypeAnywhere and TypeAny-
where One.

• Interviews to understand the ten-finger typing experience of BLV users on physical keyboards
and touch screens. Data collection and analyses of BLV users’ ten finger typing patterns on
large touch screens (section 6.3).

7.2 Schedule

The project schedule is planned in Figure 7.1.

Figure 7.1: Proposed schedule in phases. Part of the proposed work was conducted from spring 2020 to
winter 2021

CHAPTER 7. CONCLUSIONS

Acknowledgement

I would like to thank many people, who helped me learn to stand up, walk and carry on through
the academic ups and downs: to my advisor, Jacob O. Wobbrock, who introduced me into the
text entry world with his simple yet elegant ideas, which influenced my way of doing research; to
my committee members: Alexis Hiniker, who has supported me in pursuing alternative research
possibilities and almost became my second mentor; Shumin Zhai, who took care of me during the
unusual internship and offered thoughtful insights on many of my projects; Leah Findlater and
James Fogarty, whose work motivated me to look for research problems in accessibility.

Part of my work is supported by grants from Baidu and Google. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author and do not
necessarily reflect of any supporter.

I would also like to thank Abdullah X. Ali, Stephanie Ballard, Adam Berenzweig, Xiaojun Bi, Jacob
Burke, Wenzhe Cui, Erin Beneteau, Rachel L. Franz, Liang He, Chris Holstrom, Yvette Iribe, Scott
Jenson, Fanwen Ji, Alex Kale, Qisheng Li, Suning Li, Toby Jiajun Li, Yuying Liu, Alex Mariakakis,
Martez E. Mott, Dichen Qian, Paul V. Roby, Luke Rodriguez, Milly Romeijn-Stout, Anne Spencer
Ross, Ather Sharif, Jing Su, Qin Wang, Ruolin Wang, Xia Wang, He Wen, Benjemin Xie, Xuhai
Xu, Jackie Junrui Yang, Dongbo Zhai, Ruohan Zhan, Xiaoyi Zhang, Yang Zhang, Yiming Zhang
and Mingyuan Zhong.

Bibliography

[1] O. Alsharif, Tom Ouyang, F. Beaufays, S. Zhai, Thomas Breuel, and Johan Schalkwyk. 2015. Long short term
memory neural network for keyboard gesture decoding. 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (2015), 2076–2080.

[2] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira Nushi, Penny Collisson, Jina Suh,
Shamsi Iqbal, Paul N. Bennett, Kori Inkpen, Jaime Teevan, Ruth Kikin-Gil, and Eric Horvitz. 2019. Guidelines
for Human-AI Interaction. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
(CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–13.

[3] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg, Carl Case,
Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, Jie Chen, Jingdong Chen, Zhijie Chen, Mike
Chrzanowski, Adam Coates, Greg Diamos, Ke Ding, Niandong Du, Erich Elsen, Jesse Engel, Weiwei Fang, Linxi
Fan, Christopher Fougner, Liang Gao, Caixia Gong, Awni Hannun, Tony Han, Lappi Vaino Johannes, Bing
Jiang, Cai Ju, Billy Jun, Patrick LeGresley, Libby Lin, Junjie Liu, Yang Liu, Weigao Li, Xiangang Li, Dongpeng
Ma, Sharan Narang, Andrew Ng, Sherjil Ozair, Yiping Peng, Ryan Prenger, Sheng Qian, Zongfeng Quan,
Jonathan Raiman, Vinay Rao, Sanjeev Satheesh, David Seetapun, Shubho Sengupta, Kavya Srinet, Anuroop
Sriram, Haiyuan Tang, Liliang Tang, Chong Wang, Jidong Wang, Kaifu Wang, Yi Wang, Zhijian Wang, Zhiqian
Wang, Shuang Wu, Likai Wei, Bo Xiao, Wen Xie, Yan Xie, Dani Yogatama, Bin Yuan, Jun Zhan, and Zhenyao
Zhu. 2016. Deep Speech 2: End-to-End Speech Recognition in English and Mandarin. In Proceedings of the 33rd
International Conference on International Conference on Machine Learning - Volume 48 (ICML’16). JMLR.org,
173–182.

[4] Ahmed Sabbir Arif, Sunjun Kim, Wolfgang Stuerzlinger, Geehyuk Lee, and Ali Mazalek. 2016. Evaluation of
a Smart-Restorable Backspace Technique to Facilitate Text Entry Error Correction. Association for Computing
Machinery, New York, NY, USA, 5151–5162.

[5] Ahmed Sabbir Arif and Wolfgang Stuerzlinger. 2010. Predicting the Cost of Error Correction in Character-Based
Text Entry Technologies. Association for Computing Machinery, New York, NY, USA, 5–14.

[6] Ahmed Sabbir Arif and Wolfgang Stuerzlinger. 2013. Pseudo-Pressure Detection and Its Use in Predictive
Text Entry on Touchscreens. In Proceedings of the 25th Australian Computer-Human Interaction Conference:
Augmentation, Application, Innovation, Collaboration (OzCHI ’13). Association for Computing Machinery, New
York, NY, USA, 383–392.

[7] Dvorak August. U.S. Patent US2040248A, May. 1936. Typewriter keyboard.
[8] Shiri Azenkot, Jacob O. Wobbrock, Sanjana Prasain, and Richard E. Ladner. 2012. Input Finger Detection for

Nonvisual Touch Screen Text Entry in Perkinput. In Proceedings of Graphics Interface 2012 (GI ’12). Canadian
Information Processing Society, CAN, 121–129.

[9] Shiri Azenkot and Shumin Zhai. 2012. Touch Behavior with Different Postures on Soft Smartphone Keyboards.
In Proceedings of the 14th International Conference on Human-Computer Interaction with Mobile Devices and
Services (MobileHCI ’12). Association for Computing Machinery, New York, NY, USA, 251–260.

[10] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2016. Neural Machine Translation by Jointly Learning
to Align and Translate.

[11] Nikola Banovic, Ticha Sethapakdi, Yasasvi Hari, Anind K. Dey, and Jennifer Mankoff. 2019. The Limits of
Expert Text Entry Speed on Mobile Keyboards with Autocorrect. In Proceedings of the 21st International
Conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI ’19). Association for
Computing Machinery, New York, NY, USA, Article 15, 12 pages.

BIBLIOGRAPHY

Bibliography 35

[12] Francesco Barbieri, Miguel Ballesteros, Francesco Ronzano, and Horacio Saggion. 2018. Multimodal Emoji
Prediction.

[13] Michel Beaudouin-Lafon. 2004. Designing Interaction, Not Interfaces. In Proceedings of the Working Conference
on Advanced Visual Interfaces (AVI ’04). Association for Computing Machinery, New York, NY, USA, 15–22.

[14] Xiaojun Bi, Yang Li, and Shumin Zhai. 2013. FFitts Law: Modeling Finger Touch with Fitts’ Law. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’13). Association for Computing
Machinery, New York, NY, USA, 1363–1372.

[15] Xiaojun Bi, Barton A. Smith, and Shumin Zhai. 2012. Multilingual Touchscreen Keyboard Design and Opti-
mization. Human–Computer Interaction 27, 4 (2012), 352–382.

[16] Xiaojun Bi and Shumin Zhai. 2016. IJQwerty: What Difference Does One Key Change Make? Gesture Typing
Keyboard Optimization Bounded by One Key Position Change from Qwerty. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems (CHI ’16). Association for Computing Machinery, New
York, NY, USA, 49–58.

[17] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-
Shot Learners.

[18] Stuart K. Card, Allen Newell, and Thomas P. Moran. 1983. The Psychology of Human-Computer Interaction.
L. Erlbaum Associates Inc., USA.

[19] Ciprian Chelba, Mohammad Norouzi, and Samy Bengio. 2017. N-gram Language Modeling using Recurrent
Neural Network Estimation. arXiv preprint cs 1 (2017), 10.

[20] Mia Xu Chen, Benjamin N Lee, Gagan Bansal, Yuan Cao, Shuyuan Zhang, Justin Lu, Jackie Tsay, Yinan
Wang, Andrew M. Dai, Zhifeng Chen, Timothy Sohn, and Yonghui Wu. 2019. Gmail Smart Compose: Real-
Time Assisted Writing.

[21] Xiang ’Anthony’ Chen, Tovi Grossman, and George Fitzmaurice. 2014. Swipeboard: A Text Entry Technique
for Ultra-Small Interfaces That Supports Novice to Expert Transitions. In Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology (UIST ’14). Association for Computing Machinery, New
York, NY, USA, 615–620.

[22] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine
Translation.

[23] Henriette Cramer, Paloma de Juan, and Joel Tetreault. 2016. Sender-Intended Functions of Emojis in US
Messaging. In Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile
Devices and Services (MobileHCI ’16). Association for Computing Machinery, New York, NY, USA, 504–509.

[24] E. R. F. W. Crossman. 1957. The Speed and Accuracy of Simple Hand Movements. The Nature and Acquisition
of Industrial Skills. (1957).

[25] Wenzhe Cui, Suwen Zhu, Mingrui Ray Zhang, H. Andrew Schwartz, Jacob O. Wobbrock, and Xiaojun Bi. 2020.
JustCorrect: Intelligent Post Hoc Text Correction Techniques on Smartphones. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology (UIST ’20). Association for Computing Machinery,
New York, NY, USA, 487–499.

[26] Paul A David. 1985. Clio and the Economics of QWERTY. American Economic Review 75, 2 (May 1985),
332–337. https://ideas.repec.org/a/aea/aecrev/v75y1985i2p332-37.html

[27] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding.

[28] Vivek Dhakal, Anna Maria Feit, Per Ola Kristensson, and Antti Oulasvirta. 2018. Observations on Typing from
136 Million Keystrokes. Association for Computing Machinery, New York, NY, USA, 1–12.

[29] Ben Eisner, Tim Rocktäschel, Isabelle Augenstein, Matko Bošnjak, and Sebastian Riedel. 2016. emoji2vec:
Learning Emoji Representations from their Description. In Proceedings of The Fourth International Workshop
on Natural Language Processing for Social Media. Association for Computational Linguistics, Austin, TX, USA,
48–54.

BIBLIOGRAPHY

https://ideas.repec.org/a/aea/aecrev/v75y1985i2p332-37.html

Bibliography 36

[30] Anna Maria Feit and Antti Oulasvirta. 2014. PianoText: Redesigning the Piano Keyboard for Text Entry. In
Proceedings of the 2014 Conference on Designing Interactive Systems (DIS ’14). Association for Computing
Machinery, New York, NY, USA, 1045–1054.

[31] Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad Rahwan, and Sune Lehmann. 2017. Using millions of emoji
occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm. Proceedings of
the 2017 Conference on Empirical Methods in Natural Language Processing (2017).

[32] Leah Findlater, Ben Lee, and Jacob Wobbrock. 2012. Beyond QWERTY: Augmenting Touch Screen Keyboards
with Multi-Touch Gestures for Non-Alphanumeric Input. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems (CHI ’12). Association for Computing Machinery, New York, NY, USA,
2679–2682.

[33] Leah Findlater and Jacob Wobbrock. 2012. Personalized Input: Improving Ten-Finger Touchscreen Typing
through Automatic Adaptation. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’12). Association for Computing Machinery, New York, NY, USA, 815–824.

[34] Leah Findlater, Jacob O. Wobbrock, and Daniel Wigdor. 2011. Typing on Flat Glass: Examining Ten-Finger
Expert Typing Patterns on Touch Surfaces. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’11). Association for Computing Machinery, New York, NY, USA, 2453–2462.

[35] Paul. M. Fitts. 1954. The information capacity of the human motor system in controlling the amplitude of
movement. Journal of Experimental PSychology 74 (1954), 381–391.

[36] George Fitzmaurice, Azam Khan, Robert Pieké, Bill Buxton, and Gordon Kurtenbach. 2003. Tracking Menus.
In Proceedings of the 16th Annual ACM Symposium on User Interface Software and Technology (UIST ’03).
Association for Computing Machinery, New York, NY, USA, 71–79.

[37] Andrew Fowler, Kurt Partridge, Ciprian Chelba, Xiaojun Bi, Tom Ouyang, and Shumin Zhai. 2015. Effects
of Language Modeling and Its Personalization on Touchscreen Typing Performance. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems (CHI ’15). Association for Computing
Machinery, New York, NY, USA, 649–658.

[38] Vittorio Fuccella, Poika Isokoski, and Benoit Martin. 2013. Gestures and Widgets: Performance in Text Editing
on Multi-Touch Capable Mobile Devices. Association for Computing Machinery, New York, NY, USA, 2785–2794.

[39] Vittorio Fuccella and Benoît Martin. 2017. TouchTap: A Gestural Technique to Edit Text on Multi-Touch
Capable Mobile Devices (CHItaly ’17). Association for Computing Machinery, New York, NY, USA, Article 21,
6 pages.

[40] Mayank Goel, Leah Findlater, and Jacob Wobbrock. 2012. WalkType: Using Accelerometer Data to Accomodate
Situational Impairments in Mobile Touch Screen Text Entry. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’12). Association for Computing Machinery, New York, NY, USA,
2687–2696.

[41] Jun Gong and Peter Tarasewich. 2006. A New Error Metric for Text Entry Method Evaluation. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’06). Association for Computing
Machinery, New York, NY, USA, 471–474.

[42] Jun Gong, Zheer Xu, Qifan Guo, Teddy Seyed, Xiang ’Anthony’ Chen, Xiaojun Bi, and Xing-Dong Yang.
2018. WrisText: One-Handed Text Entry on Smartwatch Using Wrist Gestures. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (CHI ’18). Association for Computing Machinery, New
York, NY, USA, 1–14.

[43] Joshua Goodman, Gina Venolia, Keith Steury, and Chauncey Parker. 2002. Language Modeling for Soft Key-
boards. In Proceedings of the 7th International Conference on Intelligent User Interfaces (IUI ’02). Association
for Computing Machinery, New York, NY, USA, 194–195.

[44] Google. 2020. Gboard Android Play Store Page. https://play.google.com/store/apps/details?id=com.
google.android.inputmethod.latin

[45] Mitchell Gordon, Tom Ouyang, and Shumin Zhai. 2016. WatchWriter: Tap and Gesture Typing on a Smartwatch
Miniature Keyboard with Statistical Decoding. In Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems (CHI ’16). Association for Computing Machinery, New York, NY, USA, 3817–3821.

[46] Tovi Grossman, Ken Hinckley, Patrick Baudisch, Maneesh Agrawala, and Ravin Balakrishnan. 2006. Hover
Widgets: Using the Tracking State to Extend the Capabilities of Pen-Operated Devices. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’06). Association for Computing Machinery,
New York, NY, USA, 861–870.

BIBLIOGRAPHY

https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin
https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin

Bibliography 37

[47] Jonathan T. Grudin. 1983. Error Patterns in Novice and Skilled Transcription Typing. Springer New York, New
York, NY, 121–143.

[48] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual Learning for Image Recognition.
arXiv preprint arXiv:1512.03385 (2015).

[49] Ken Hinckley, Patrick Baudisch, Gonzalo Ramos, and Francois Guimbretiere. 2005. Design and Analysis of
Delimiters for Selection-Action Pen Gesture Phrases in Scriboli. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’05). Association for Computing Machinery, New York, NY, USA,
451–460.

[50] Jonggi Hong, Seongkook Heo, Poika Isokoski, and Geehyuk Lee. 2015. SplitBoard: A Simple Split Soft Keyboard
for Wristwatch-Sized Touch Screens. In Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems (CHI ’15). Association for Computing Machinery, New York, NY, USA, 1233–1236.

[51] Eric Horvitz. 1999. Principles of Mixed-Initiative User Interfaces. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’99). Association for Computing Machinery, New York, NY, USA,
159–166.

[52] WHIRLSCAPE Inc. 2016. Dango - Your Emoji Assistant. https://getdango.com

[53] Minal Jain, Sarita Seshagiri, and Simran Chopra. 2016. How Do I Communicate My Emotions on SNS and
IMs?. In Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices
and Services Adjunct (MobileHCI ’16). Association for Computing Machinery, New York, NY, USA, 767–774.

[54] Shaun K. Kane, Meredith Ringel Morris, and Jacob O. Wobbrock. 2013. Touchplates: Low-Cost Tactile Overlays
for Visually Impaired Touch Screen Users. In Proceedings of the 15th International ACM SIGACCESS Conference
on Computers and Accessibility (ASSETS ’13). Association for Computing Machinery, New York, NY, USA,
Article 22, 8 pages.

[55] Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias Kaufman, Balint Miklos, Greg Corrado, Andrew Tomkins,
Laszlo Lukacs, Marina Ganea, Peter Young, and Vivek Ramavajjala. 2016. Smart Reply: Automated Response
Suggestion for Email. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD) (2016).

[56] Slava Katz. 1987. Estimation of probabilities from sparse data for the language model component of a speech
recognizer. IEEE transactions on acoustics, speech, and signal processing 35, 3 (1987), 400–401.

[57] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. 2015. Character-Aware Neural Language
Models.

[58] D. Klakow and Jochen Peters. 2002. Testing the correlation of word error rate and perplexity. Speech Commun.
38 (2002), 19–28.

[59] Per-Ola Kristensson and Shumin Zhai. 2004. SHARK2: A Large Vocabulary Shorthand Writing System for
Pen-Based Computers. In Proceedings of the 17th Annual ACM Symposium on User Interface Software and
Technology (UIST ’04). Association for Computing Machinery, New York, NY, USA, 43–52.

[60] Luis A. Leiva, Alireza Sahami, Alejandro Catala, Niels Henze, and Albrecht Schmidt. 2015. Text Entry on Tiny
QWERTY Soft Keyboards. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (CHI ’15). Association for Computing Machinery, New York, NY, USA, 669–678.

[61] Vladimir Iosifovich Levenshtein. 1966. Binary codes capable of correcting deletions, insertions and reversals.
Soviet Physics Doklady 10, 8 (Feb 1966), 707–710. Doklady Akademii Nauk SSSR, V163 No4 845-848 1965.

[62] James R. Lewis. 1999. Input Rates and User Preference for Three Small-Screen Input Methods: Standard
Keyboard, Predictive Keyboard, and Handwriting. Proceedings of the Human Factors and Ergonomics Society
Annual Meeting 43, 5 (1999), 425–428.

[63] Yutang Lin. U.S. Patent US2613795A, Oct. 1952. Chinese typewriter.
[64] Kent Lyons, Thad Starner, Daniel Plaisted, James Fusia, Amanda Lyons, Aaron Drew, and E. W. Looney.

2004. Twiddler Typing: One-Handed Chording Text Entry for Mobile Phones. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’04). Association for Computing Machinery, New
York, NY, USA, 671–678.

[65] I. Scott MacKenzie. 2015. A Note on Calculating Text Entry Speed. https://www.yorku.ca/mack/
RN-TextEntrySpeed.html

[66] I. Scott MacKenzie and R. William Soukoreff. 2003. Phrase Sets for Evaluating Text Entry Techniques. In CHI
’03 Extended Abstracts on Human Factors in Computing Systems (CHI EA ’03). Association for Computing
Machinery, New York, NY, USA, 754–755.

BIBLIOGRAPHY

https://getdango.com
https://www.yorku.ca/mack/RN-TextEntrySpeed.html
https://www.yorku.ca/mack/RN-TextEntrySpeed.html

Bibliography 38

[67] I. Scott MacKenzie and Kumiko Tanaka-Ishii. 2007. Text Entry Systems: Mobility, Accessibility, Universality.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[68] I. Scott MacKenzie and Shawn X. Zhang. 1999. The Design and Evaluation of a High-Performance Soft Keyboard.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’99). Association for
Computing Machinery, New York, NY, USA, 25–31.

[69] Edgar Matias, I. Scott MacKenzie, and William Buxton. 1996. One-Handed Touch Typing on a QWERTY
Keyboard. Hum.-Comput. Interact. 11, 1 (March 1996), 1–27.

[70] Eugene W. Myers. 1986. An O(ND) Difference Algorithm and Its Variations. Algorithmica 1 (1986), 251–266.
[71] Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian Hadiwinoto, and Joel Tetreault. 2013. The CoNLL-2013

Shared Task on Grammatical Error Correction. In Proceedings of the Seventeenth Conference on Computational
Natural Language Learning: Shared Task. Association for Computational Linguistics, Sofia, Bulgaria, 1–12.

[72] Donald A. Norman. 1994. How Might People Interact with Agents. Commun. ACM 37, 7 (July 1994), 68–71.
[73] Nuance. Nuance - Conversational AI for Healthcare and Customer Engagement. https://www.nuance.com/

index.html

[74] Stephen Oney, Chris Harrison, Amy Ogan, and Jason Wiese. 2013. ZoomBoard: A Diminutive Qwerty Soft
Keyboard Using Iterative Zooming for Ultra-Small Devices. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems (CHI ’13). Association for Computing Machinery, New York, NY, USA,
2799–2802.

[75] Tom Ouyang, David Rybach, Françoise Beaufays, and Michael Riley. 2017. Mobile Keyboard Input Decoding
with Finite-State Transducers.

[76] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe: Global Vectors for Word Represen-
tation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics, Doha, Qatar, 1532–1543.

[77] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language Models
are Unsupervised Multitask Learners. (2019).

[78] Quentin Roy, Futian Zhang, and Daniel Vogel. 2019. Automation Accuracy Is Good, but High Controllability
May Be Better. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI ’19).
Association for Computing Machinery, New York, NY, USA, 1–8.

[79] Alexander M. Rush, Sumit Chopra, and Jason Weston. 2015. A Neural Attention Model for Abstractive Sentence
Summarization.

[80] Claude E. Shannon. 1948. A mathematical theory of communication. Bell System Technical Journal 27 (1948),
379–423.

[81] Weinan Shi, Chun Yu, Xin Yi, Zhen Li, and Yuanchun Shi. 2018a. TOAST: Ten-Finger Eyes-Free Typing on
Touchable Surfaces. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 1, Article 33 (March 2018), 23
pages.

[82] Weinan Shi, Chun Yu, Xin Yi, Zhen Li, and Yuanchun Shi. 2018b. TOAST: Ten-Finger Eyes-Free Typing on
Touchable Surfaces. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 1, Article 33 (March 2018), 23
pages.

[83] Ben Shneiderman. 2020. Human-Centered Artificial Intelligence: Reliable, Safe & Trustworthy. International
Journal of Human–Computer Interaction 36, 6 (2020), 495–504.

[84] Miika Silfverberg, I. Scott MacKenzie, and Panu Korhonen. 2000. Predicting Text Entry Speed on Mobile Phones.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’00). Association for
Computing Machinery, New York, NY, USA, 9–16.

[85] Shyamli Sindhwani, Christof Lutteroth, and Gerald Weber. 2019. ReType: Quick Text Editing with Keyboard
and Gaze. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI ’19).
Association for Computing Machinery, New York, NY, USA, 1–13.

[86] Brian A. Smith, Xiaojun Bi, and Shumin Zhai. 2015. Optimizing Touchscreen Keyboards for Gesture Typing.
In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI ’15).
Association for Computing Machinery, New York, NY, USA, 3365–3374.

[87] R. William Soukoreff and I. Scott MacKenzie. 2001. Measuring Errors in Text Entry Tasks: An Application
of the Levenshtein String Distance Statistic. In CHI ’01 Extended Abstracts on Human Factors in Computing
Systems (CHI EA ’01). Association for Computing Machinery, New York, NY, USA, 319–320.

BIBLIOGRAPHY

https://www.nuance.com/index.html
https://www.nuance.com/index.html

Bibliography 39

[88] R. William Soukoreff and I. Scott MacKenzie. 2003. Metrics for Text Entry Research: An Evaluation of MSD
and KSPC, and a New Unified Error Metric. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’03). Association for Computing Machinery, New York, NY, USA, 113–120.

[89] Caleb Southern, James Clawson, Brian Frey, Gregory Abowd, and Mario Romero. 2012. An Evaluation of
BrailleTouch: Mobile Touchscreen Text Entry for the Visually Impaired. In Proceedings of the 14th International
Conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI ’12). Association for
Computing Machinery, New York, NY, USA, 317–326.

[90] Srinath Sridhar, Anna Maria Feit, Christian Theobalt, and Antti Oulasvirta. 2015. Investigating the Dexterity
of Multi-Finger Input for Mid-Air Text Entry. In Proceedings of the 33rd Annual ACM Conference on Hu-
man Factors in Computing Systems (CHI ’15). Association for Computing Machinery, New York, NY, USA,
3643–3652.

[91] Larry Tesler. 2012. A Personal History of Modeless Text Editing and Cut/Copy-Paste. Interactions 19, 4 (July
2012), 70–75.

[92] Garreth W. Tigwell, Benjamin M. Gorman, and Rachel Menzies. 2020. Emoji Accessibility for Visually Im-
paired People. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI ’20).
Association for Computing Machinery, New York, NY, USA, 1–14.

[93] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. 2017. Attention Is All You Need.

[94] Dan Venolia and Forrest Neiberg. 1994. T-Cube: A Fast, Self-Disclosing Pen-Based Alphabet. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’94). Association for Computing
Machinery, New York, NY, USA, 265–270.

[95] Veroniiiica. 2018. How Do People with Vision Impairments Use Emoji? https://www.perkinselearning.org/
technology/blog/how-do-people-vision-impairments-use-emoji

[96] Keith Vertanen, Crystal Fletcher, Dylan Gaines, Jacob Gould, and Per Ola Kristensson. 2018. The Impact
of Word, Multiple Word, and Sentence Input on Virtual Keyboard Decoding Performance. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18). Association for Computing
Machinery, New York, NY, USA, 1–12.

[97] Keith Vertanen, Dylan Gaines, Crystal Fletcher, Alex M. Stanage, Robbie Watling, and Per Ola Kristensson.
2019. VelociWatch: Designing and Evaluating a Virtual Keyboard for the Input of Challenging Text. In Pro-
ceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI ’19). Association for
Computing Machinery, New York, NY, USA, 1–14.

[98] Keith Vertanen and Per Ola Kristensson. 2011. A Versatile Dataset for Text Entry Evaluations Based on Genuine
Mobile Emails. In Proceedings of the 13th International Conference on Human Computer Interaction with Mobile
Devices and Services (MobileHCI ’11). Association for Computing Machinery, New York, NY, USA, 295–298.

[99] Keith Vertanen, Haythem Memmi, Justin Emge, Shyam Reyal, and Per Ola Kristensson. 2015. VelociTap:
Investigating Fast Mobile Text Entry Using Sentence-Based Decoding of Touchscreen Keyboard Input. In Pro-
ceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI ’15). Association
for Computing Machinery, New York, NY, USA, 659–668.

[100] Daniel Vogel and Patrick Baudisch. 2007. Shift: A Technique for Operating Pen-Based Interfaces Using Touch.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’07). Association for
Computing Machinery, New York, NY, USA, 657–666.

[101] Will Walmsley. 2015. Exploring Emoji: The Quest for the Perfect Emoticon. http://minuum.com/
exploring-emoji-the-quest-for-the-perfect-emoticon/

[102] David J. Ward, Alan F. Blackwell, and David J. C. MacKay. 2000. Dasher—a Data Entry Interface Using
Continuous Gestures and Language Models. In Proceedings of the 13th Annual ACM Symposium on User Interface
Software and Technology (UIST ’00). Association for Computing Machinery, New York, NY, USA, 129–137.

[103] Daryl Weir, Henning Pohl, Simon Rogers, Keith Vertanen, and Per Ola Kristensson. 2014. Uncertain Text
Entry on Mobile Devices. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’14). Association for Computing Machinery, New York, NY, USA, 2307–2316.

[104] Mark Weiser. 1999. The Computer for the 21st Century. SIGMOBILE Mob. Comput. Commun.
Rev. 3, 3 (July 1999), 3–11.

[105] A. Welford. 1968. Fundamentals of skill / A.T. Welford. Methuen, London, England, 137–160.

BIBLIOGRAPHY

https://www.perkinselearning.org/technology/blog/how-do-people-vision-impairments-use-emoji
https://www.perkinselearning.org/technology/blog/how-do-people-vision-impairments-use-emoji
http://minuum.com/exploring-emoji-the-quest-for-the-perfect-emoticon/
http://minuum.com/exploring-emoji-the-quest-for-the-perfect-emoticon/

Bibliography 40

[106] L. West. 1967. Vision and kinesthesis in the acquisition of typewriting skill. The Journal of applied psychology
51 2 (1967), 161–166.

[107] Sarah Wiseman and Sandy J. J. Gould. 2018. Repurposing Emoji for Personalised Communication: Why
Means “I Love You”. Association for Computing Machinery, New York, NY, USA, 1–10.

[108] Jacob O. Wobbrock and Brad A. Myers. 2006. Analyzing the Input Stream for Character- Level Errors in
Unconstrained Text Entry Evaluations. ACM Trans. Comput.-Hum. Interact. 13, 4 (Dec. 2006), 458–489.

[109] Jacob O. Wobbrock, Brad A. Myers, and John A. Kembel. 2003. EdgeWrite: A Stylus-Based Text Entry Method
Designed for High Accuracy and Stability of Motion. In Proceedings of the 16th Annual ACM Symposium on
User Interface Software and Technology (UIST ’03). Association for Computing Machinery, New York, NY,
USA, 61–70.

[110] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and
Alexander M. Rush. 2019. HuggingFace’s Transformers: State-of-the-art Natural Language Processing. ArXiv
abs/1910.03771 (2019).

[111] Pui Chung Wong, Kening Zhu, and Hongbo Fu. 2018. FingerT9: Leveraging Thumb-to-Finger Interaction for
Same-Side-Hand Text Entry on Smartwatches. Association for Computing Machinery, New York, NY, USA,
1–10.

[112] Ziang Xie, Anand Avati, Naveen Arivazhagan, Dan Jurafsky, and Andrew Y. Ng. 2016. Neural Language
Correction with Character-Based Attention.

[113] Zheer Xu, Weihao Chen, Dongyang Zhao, Jiehui Luo, Te-Yen Wu, Jun Gong, Sicheng Yin, Jialun Zhai, and
Xing-Dong Yang. 2020. BiTipText: Bimanual Eyes-Free Text Entry on a Fingertip Keyboard. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems (CHI ’20). Association for Computing
Machinery, New York, NY, USA, 1–13.

[114] Zheer Xu, Pui Chung Wong, Jun Gong, Te-Yen Wu, Aditya Shekhar Nittala, Xiaojun Bi, Jürgen Steimle,
Hongbo Fu, Kening Zhu, and Xing-Dong Yang. 2019. TipText: Eyes-Free Text Entry on a Fingertip Keyboard.
In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (UIST ’19).
Association for Computing Machinery, New York, NY, USA, 883–899.

[115] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V. Le. 2020. XLNet:
Generalized Autoregressive Pretraining for Language Understanding.

[116] Xin Yi, Chen Wang, Xiaojun Bi, and Yuanchun Shi. 2020. PalmBoard: Leveraging Implicit Touch Pressure in
Statistical Decoding for Indirect Text Entry. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems (CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–13.

[117] Xin Yi, Chun Yu, Weijie Xu, Xiaojun Bi, and Yuanchun Shi. 2017. COMPASS: Rotational Keyboard on
Non-Touch Smartwatches. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems
(CHI ’17). Association for Computing Machinery, New York, NY, USA, 705–715.

[118] Xin Yi, Chun Yu, Mingrui Zhang, Sida Gao, Ke Sun, and Yuanchun Shi. 2015. ATK: Enabling Ten-Finger
Freehand Typing in Air Based on 3D Hand Tracking Data. In Proceedings of the 28th Annual ACM Symposium
on User Interface Software amp; Technology (UIST ’15). Association for Computing Machinery, New York, NY,
USA, 539–548.

[119] Ying Yin, Tom Yu Ouyang, Kurt Partridge, and Shumin Zhai. 2013. Making Touchscreen Keyboards Adaptive
to Keys, Hand Postures, and Individuals: A Hierarchical Spatial Backoff Model Approach. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’13). Association for Computing Machinery,
New York, NY, USA, 2775–2784.

[120] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi, and Quoc V.
Le. 2018a. QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension.

[121] Chun Yu, Ke Sun, Mingyuan Zhong, Xincheng Li, Peijun Zhao, and Yuanchun Shi. 2016. One-Dimensional
Handwriting: Inputting Letters and Words on Smart Glasses. Association for Computing Machinery, New York,
NY, USA, 71–82.

[122] Difeng Yu, K. Fan, H. Zhang, Diego Monteiro, Wenge Xu, and H. Liang. 2018b. PizzaText: Text Entry for
Virtual Reality Systems Using Dual Thumbsticks. IEEE Transactions on Visualization and Computer Graphics
24 (2018), 2927–2935.

BIBLIOGRAPHY

Bibliography 41

[123] Torsten Zesch. 2012. Measuring Contextual Fitness Using Error Contexts Extracted from the Wikipedia Revi-
sion History. In Proceedings of the 13th Conference of the European Chapter of the Association for Computational
Linguistics. Association for Computational Linguistics, Avignon, France, 529–538.

[124] Mingrui Ray Zhang, Alex Mariakakis, Jacob Burke, and Jacob O. Wobbrock. 2021a. Acomparative study of
lexical and semantic emoji suggestion systems. In Proceedings of iConference 2021. Springer, Switzerland.

[125] Mingrui Ray Zhang, Ruolin Wang, Xuhai Xu, Qisheng Li, Ather Sharif, and Jacob O. Wobbrock. 2021b.
Voicemoji: Emoji entry using voice for visually impaired people. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems (CHI ’21). ACM, New York, NY, USA.

[126] Mingrui Ray Zhang, He Wen, and Jacob O. Wobbrock. 2019a. Type, Then Correct: Intelligent Text Correction
Techniques for Mobile Text Entry Using Neural Networks. In Proceedings of the 32nd Annual ACM Symposium
on User Interface Software and Technology (UIST ’19). Association for Computing Machinery, New York, NY,
USA, 843–855.

[127] Mingrui Ray Zhang and Jacob O. Wobbrock. 2019. Beyond the Input Stream: Making Text Entry Evaluations
More Flexible with Transcription Sequences. In Proceedings of the 32Nd Annual ACM Symposium on User
Interface Software and Technology (UIST ’19). ACM, New York, NY, USA, 831–842.

[128] Mingrui Ray Zhang and Jacob O. Wobbrock. 2020. Gedit: Keyboard Gestures for Mobile Text Editing.
In Proceedings of Graphics Interface 2020 (GI 2020). Canadian Human-Computer Communications Society /
Société canadienne du dialogue humain-machine, 470 – 473.

[129] Mingrui Ray Zhang and Shumin Zhai. 2021. PhraseFlow: Designs and Empirical Studies of Phrase-Level Input.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI ’21). ACM, New
York, NY, USA.

[130] Mingrui Ray Zhang, Shumin Zhai, and Jacob O. Wobbrock. 2019b. Text Entry Throughput: Towards Unifying
Speed and Accuracy in a Single Performance Metric.. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems. ACM, New York, NY, USA.

[131] Xiang Zhang, Junbo Zhao, and Yann LeCun. 2016. Character-level Convolutional Networks for Text Classifi-
cation.

[132] Suwen Zhu, Tianyao Luo, Xiaojun Bi, and Shumin Zhai. 2018. Typing on an Invisible Keyboard. In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18). Association for Computing
Machinery, New York, NY, USA, 1–13.

BIBLIOGRAPHY

	Introduction
	Related Work
	Text Input Models and Metrics
	Text Input Methods Beyond the Desktop Environment
	The Machine Learning Advancement in Natural Language Processing
	Design Principles for Human-AI Interaction

	Models and Metrics for Intelligent Text Input Methods
	The Transcription Sequence Model: Enable Less Constrained Text Entry Evaluations
	Text Entry Throughput: Towards Unifying Speed and Accuracy in a Single Performance Metric

	Intelligent Text Input Methods
	PhraseFlow: Designs and Empirical Studies of Phrase-Level Input
	Gedit: Keyboard Gestures for Mobile Text Editing
	Type, Then Correct: Intelligent Text Correction Techniques for Touch Screens
	JustCorrect: Intelligent Post Hoc Text Correction Techniques on Smartphones

	Intelligent Entry Methods for Emojis
	Comparing Lexical and Semantic Emoji Suggestions
	Voicemoji: Speech-based Emoji Entry System

	Proposed Work
	TypeAnywhere: A Ubiquitous QWERTY Text Entry Solution
	TypeAnywhere One: One-handed TypeAnywhere
	AnchorKeyboard: Non-visual Keyboard for Large Touch Screens

	Conclusions
	Contributions
	Theoretical Contributions
	Artifact Contributions
	Empirical Contributions

	Schedule

	Acknowledgement
	Bibliography

